Structural and optical properties of pure and copper doped zinc oxide nanoparticles

Pure and copper-doped zinc oxide nanoparticles (NPs) have been synthesized via chemical co-precipitation method where hydrazine is used as reducing agent and aqueous extract of Euphorbia milii plant as capping agent. Main objectives of the reported work are to investigate the effect of copper doping...

Full description

Saved in:
Bibliographic Details
Published inResults in physics Vol. 9; pp. 1301 - 1309
Main Authors Sajjad, Muhammad, Ullah, Inam, Khan, M.I., Khan, Jamshid, Khan, M. Yaqoob, Qureshi, Muhammad Tauseef
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2018
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pure and copper-doped zinc oxide nanoparticles (NPs) have been synthesized via chemical co-precipitation method where hydrazine is used as reducing agent and aqueous extract of Euphorbia milii plant as capping agent. Main objectives of the reported work are to investigate the effect of copper doping on crystal structure of ZnO nanoparticles; to study the effect of copper doping on optical band gap of ZnO nanoparticles and photoluminescence (PL) study of pure and copper-doped ZnO nanoparticles. To achieve the aforementioned objectives, XRD and SEM tests were performed for the identification and confirmation of crystal structure and morphology of the prepared samples. From XRD data the average grain size for pure ZnO was observed to be 24.62 nm which was first decreased to 18.95 nm for 5 wt% Cu-doped sample and then it was found to increase up to 37.80 nm as the Cu doping was increased to 7 wt%. Optical band gap of pure and Cu-doped ZnO nanoparticles was calculated from diffuse reflectance spectroscopy (DRS) spectra and was found to decrease from 3.13 eV to 2.94 eV as the amount of Cu increases up to 7 wt%. In photoluminescence study, PL technique was used and enhanced visible spectrum was observed. For further characterization FT-IR and EDX tests were also carried out.
ISSN:2211-3797
2211-3797
DOI:10.1016/j.rinp.2018.04.010