Peptide Nanophotonics: From Optical Waveguiding to Precise Medicine and Multifunctional Biochips

Optical waveguiding phenomena found in bioinspired chemically synthesized peptide nanostructures are a new paradigm which can revolutionize emerging fields of precise medicine and health monitoring. A unique combination of their intrinsic biocompatibility with remarkable multifunctional optical prop...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 34; pp. e1801147 - n/a
Main Authors Apter, Boris, Lapshina, Nadezda, Handelman, Amir, Fainberg, Boris D., Rosenman, Gil
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Optical waveguiding phenomena found in bioinspired chemically synthesized peptide nanostructures are a new paradigm which can revolutionize emerging fields of precise medicine and health monitoring. A unique combination of their intrinsic biocompatibility with remarkable multifunctional optical properties and developed nanotechnology of large peptide wafers makes them highly promising for new biomedical light therapy tools and implantable optical biochips. This Review highlights a new field of peptide nanophotonics. It covers peptide nanotechnology and the fabrication process of peptide integrated optical circuits, basic studies of linear and nonlinear optical phenomena in biological and bioinspired nanostructures, and their passive and active optical waveguiding. It is shown that the optical properties of this generation of bio‐optical materials are governed by fundamental biological processes. Refolding the peptide secondary structure is followed by wideband optical absorption and visible tunable fluorescence. In peptide optical waveguides, such a bio‐optical effect leads to switching from passive waveguiding mode in native α‐helical phase to an active one in the β‐sheet phase. The found active waveguiding effect in β‐sheet fiber structures below optical diffraction limit opens an avenue for the future development of new bionanophotonics in ultrathin peptide/protein fibrillar structures toward advanced biomedical nanotechnology. An emerging field of peptide nanophotonics is presented. It covers basic studies conducted in biological and bioinspired nanostructures on linear, nonlinear optical and visible fluorescent phenomena, and passive and active optical waveguiding. A unique combination of intrinsic biocompatibility with multifunctional optical properties and developed nanotechnology of peptide integrated optical circuits makes them highly promising for precise biomedical light therapy tools and implantable optical biochips.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:1613-6810
1613-6829
DOI:10.1002/smll.201801147