Design Principles for Covalent Organic Frameworks as Efficient Electrocatalysts in Clean Energy Conversion and Green Oxidizer Production

Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF‐based electrocatalysts for oxygen reduction and evolution reactions...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 29; no. 17
Main Authors Lin, Chun‐Yu, Zhang, Lipeng, Zhao, Zhenghang, Xia, Zhenhai
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF‐based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal‐air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first‐principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline‐earth metal‐porphyrin COFs could catalyze the direct production of H2O2, a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production. Covalent organic frameworks (COFs) hold potential for various applications. To rationally design COF‐based electrocatalysts, activity descriptors are identified with the first‐principle calculations. The calculations also predict that alkaline‐earth metal‐porphyrin COFs could catalyze direct production of H2O2, a green oxidizer. The design principles provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.201606635