Surface Modified MXene‐Based Nanocomposites for Electrochemical Energy Conversion and Storage

In recent years, the rapidly growing attention on MXenes makes the material a rising star in the 2D materials family. Although most researchers' interests are still focused on the properties of bare MXenes, little attention has been paid to the surface chemistry of MXenes and MXene‐based nanoco...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 25; pp. e1901503 - n/a
Main Authors Yu, Hong, Wang, Yonghui, Jing, Yao, Ma, Jianmin, Du, Cheng‐Feng, Yan, Qingyu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In recent years, the rapidly growing attention on MXenes makes the material a rising star in the 2D materials family. Although most researchers' interests are still focused on the properties of bare MXenes, little attention has been paid to the surface chemistry of MXenes and MXene‐based nanocomposites. To this end, this Review offers a comprehensive discussion on surface modified MXene‐based nanocomposites for energy conversion and storage (ECS) applications. Based on the structure and reaction mechanism, the related synthesis methods toward MXenes are briefly summarized. After the discussion of existing surface modification techniques, the surface modified MXene‐based nanocomposites and their inherent chemical principles are presented. Finally, the application of these surface modified nanocomposites for supercapacitors (SCs), lithium/sodium–ion batteries (LIBs/SIBs), and electrocatalytic water splitting is discussed. The challenges and prospects of MXene‐based nanocomposites for future ECS applications are also presented. Recently, MXenes have gained increasing attention in the field of energy conversion and storage (ECS). Meanwhile, the unique surface chemistry of MXenes endows them with great potential in the construction of 2D based nanocomposites. To this end, the present work offers a comprehensive summary of surface modified MXene‐based nanocomposites for ECS applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:1613-6810
1613-6829
1613-6829
DOI:10.1002/smll.201901503