Study on Performance and Operation Mechanism of a Separation Equipment for a PWR Steam Generator
Computational fluid dynamics (CFD) is adopted to calculate and analyze the performance and separation mechanism of a steam-water separation equipment for a pressurized water reactor (PWR) steam generator. The steam-water two-phase flow is simulated by the Euler two-fluid model, and several represent...
Saved in:
Published in | Atmosphere Vol. 14; no. 3; p. 451 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Computational fluid dynamics (CFD) is adopted to calculate and analyze the performance and separation mechanism of a steam-water separation equipment for a pressurized water reactor (PWR) steam generator. The steam-water two-phase flow is simulated by the Euler two-fluid model, and several representative water droplet diameters are selected among 50 to 400 μm. The influence mechanism of water droplet diameter on the performance is investigated by analyzing the flow parameters such as phase volume fraction, velocity, and turbulent kinetic energy. The results show that the integrated calculation and analysis of the separation equipment can more truly reflect the flow state between the separators, improving the reliability of the performance prediction and mechanism analysis. With the increase in water droplet diameter, the separation efficiency of the separation equipment and each separator gradually increases, the outlet wetness gradually decreases, and the pressure loss first decreases and then stabilizes. When 400 μm is taken as the characteristic value of the actual droplet diameter distribution at the inlet of the separation equipment, the performance prediction is more accurate, the pressure loss of each separator is relatively close, and the pressure loss of the primary separator is less affected by the droplet diameter and smaller than that of the swirl-vane primary separator, which is conducive to achieving a higher circulation ratio (CR). Re-entrainment occurs at the perforations of the primary separator and the outlet of the secondary separator, and the corresponding structure is suggested to be optimized to further improve separation efficiency of the separation equipment. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos14030451 |