Three-Port Converters for Energy Conversion of PV-BES Integrated Systems - A Review

The integration of battery energy storage (BES) with photovoltaic (PV) systems is becoming economically attractive for residential customers. The conventional approach for the interconnection of PV and battery systems requires at least two separate power converters that results in multistage power c...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; p. 1
Main Authors Haque, Md Mejbaul, Wolfs, Peter, Alahakoon, Sanath, Islam, Md. Ariful, Nadarajah, Mithulan, Zare, Firuz, Farrok, Omar
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The integration of battery energy storage (BES) with photovoltaic (PV) systems is becoming economically attractive for residential customers. The conventional approach for the interconnection of PV and battery systems requires at least two separate power converters that results in multistage power conversion for some power flows. The dc-dc three port converters (TPCs) are an alternative solution. These converters have many topological variants and possess different operating principles, topological benefits and limitations, and complexities. This paper concentrates on the topological study of TPCs for integrated PV and BESS applications in the power range from a few hundred watts to 350 kW. These are classified into three different categories based on their isolation features between the ports to establish a topological mapping of the reported TPCs. This provides a framework that systematically explores the full range of technical benefits and limitations of each TPC topology. This paper also examines the possible extension of the TPC topologies for grid-interactive PV-BES systems where bidirectional power flow capability is required between grid and BES systems. This extensive review will provide a useful framework and a strong point of reference for researchers for the selection of TPC topologies to meet the system requirements for PV and energy storage applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3235924