MARL-Based Multi-Satellite Intelligent Task Planning Method
In this article, we propose a solution to multi-satellite intelligent task planning using the multi-agent reinforcement learning (MARL) method. Fristly, we have developed a multi-satellite task planning model based on the Markov game framework. Furthermore, we have computationally designed a satelli...
Saved in:
Published in | IEEE access Vol. 11; pp. 135517 - 135528 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this article, we propose a solution to multi-satellite intelligent task planning using the multi-agent reinforcement learning (MARL) method. Fristly, we have developed a multi-satellite task planning model based on the Markov game framework. Furthermore, we have computationally designed a satellite state transition function to address the task planning problem and successfully solved it using the multi-agent proximal policy optimization (MAPPO) algorithm. Our experimental results demonstrate that the MARL method exhibits remarkable convergence speed and performance, delivering significant rewards in multi-scale task planning scenarios. Consequently, it proves to be a highly suitable approach for multi-satellite intelligent task planning. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2023.3337358 |