High-Performance Tandem White Micro-OLEDs for Virtual Reality and Mixed Reality Displays
To achieve wide-gamut and high-efficiency tandem white OLED (WOLED) microdisplays, we propose a new structure leveraging high-order antinodes and patterned microcavities. The color gamut coverages of 95% Rec. 2020 and 92% Rec. 2020 can be achieved in B/G/R tandem WOLED with a moderate microcavity an...
Saved in:
Published in | Crystals (Basel) Vol. 14; no. 4; p. 332 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2073-4352 2073-4352 |
DOI | 10.3390/cryst14040332 |
Cover
Loading…
Summary: | To achieve wide-gamut and high-efficiency tandem white OLED (WOLED) microdisplays, we propose a new structure leveraging high-order antinodes and patterned microcavities. The color gamut coverages of 95% Rec. 2020 and 92% Rec. 2020 can be achieved in B/G/R tandem WOLED with a moderate microcavity and B/YG tandem WOLED with a strong microcavity, respectively. We have also boosted the optical efficiency by 62% for the tandem B/YG WOLED using the high-order antinodes at optimal conditions. Such a WOLED microdisplay helps reduce the power consumption of virtual reality (VR) and mixed reality (MR) displays while keeping a wide color gamut. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2073-4352 2073-4352 |
DOI: | 10.3390/cryst14040332 |