Metastatic melanoma treated by immunotherapy: discovering prognostic markers from radiomics analysis of pretreatment CT with feature selection and classification

Purpose Immunotherapy has dramatically improved the prognosis of patients with metastatic melanoma (MM). Yet, there is a lack of biomarkers to predict whether a patient will benefit from immunotherapy. Our aim was to create radiomics models on pretreatment computed tomography (CT) to predict overall...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for computer assisted radiology and surgery Vol. 17; no. 10; pp. 1867 - 1877
Main Authors Ungan, Gulnur, Lavandier, Anne-Flore, Rouanet, Jacques, Hordonneau, Constance, Chauveau, Benoit, Pereira, Bruno, Boyer, Louis, Garcier, Jean-Marc, Mansard, Sandrine, Bartoli, Adrien, Magnin, Benoit
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2022
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose Immunotherapy has dramatically improved the prognosis of patients with metastatic melanoma (MM). Yet, there is a lack of biomarkers to predict whether a patient will benefit from immunotherapy. Our aim was to create radiomics models on pretreatment computed tomography (CT) to predict overall survival (OS) and treatment response in patients with MM treated with anti-PD-1 immunotherapy. Methods We performed a monocentric retrospective analysis of 503 metastatic lesions in 71 patients with 46 radiomics features extracted following lesion segmentation. Predictive accuracies for OS < 1 year versus > 1 year and treatment response versus no response was compared for five feature selection methods (sequential forward selection, recursive, Boruta, relief, random forest) and four classifiers (support vector machine (SVM), random forest, K-nearest neighbor, logistic regression (LR)) used with or without SMOTE data augmentation. A fivefold cross-validation was performed at the patient level, with a tumour-based classification. Results The highest accuracy level for OS predictions was obtained with 3D lesions (0.91) without clinical data integration when combining Boruta feature selection and the LR classifier, The highest accuracy for treatment response prediction was obtained with 3D lesions (0.88) without clinical data integration when combining Boruta feature selection, the LR classifier and SMOTE data augmentation. The accuracy was significantly higher concerning OS prediction with 3D segmentation (0.91 vs 0.86) while clinical data integration led to improved accuracy notably in 2D lesions (0.76 vs 0.87) regarding treatment response prediction. Skewness was the only feature found to be an independent predictor of OS (HR (CI 95%) 1.34, p -value 0.001). Conclusion This is the first study to investigate CT texture parameter selection and classification methods for predicting MM prognosis with treatment by immunotherapy. Combining pretreatment CT radiomics features from a single tumor with data selection and classifiers may accurately predict OS and treatment response in MM treated with anti-PD-1.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1861-6429
1861-6410
1861-6429
DOI:10.1007/s11548-022-02662-8