Controlled assembly of multi-segment nanowires by histidine-tagged peptides
A facile technique was demonstrated for the controlled assembly and alignment of multi-segment nanowires using bioengineered polypeptides. An elastin-like-polypeptide (ELP)-based biopolymer consisting of a hexahistine cluster at each end (His(6)-ELP-His(6)) was generated and purified by taking advan...
Saved in:
Published in | Nanotechnology Vol. 17; no. 14; pp. 3375 - 3379 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
28.07.2006
|
Online Access | Get full text |
Cover
Loading…
Summary: | A facile technique was demonstrated for the controlled assembly and alignment of multi-segment nanowires using bioengineered polypeptides. An elastin-like-polypeptide (ELP)-based biopolymer consisting of a hexahistine cluster at each end (His(6)-ELP-His(6)) was generated and purified by taking advantage of the reversible phase transition property of ELP. The affinity between the His(6) domain of biopolymers and the nickel segment of multi-segment nickel/gold/nickel nanowires was exploited for the directed assembly of nanowires onto peptide-functionalized electrode surfaces. The presence of the ferromagnetic nickel segments on the nanowires allowed the control of directionality by an external magnetic field. Using this method, the directed assembly and positioning of multi-segment nanowires across two microfabricated nickel electrodes in a controlled manner was accomplished with the expected ohmic contact. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0957-4484 1361-6528 1361-6528 |
DOI: | 10.1088/0957-4484/17/14/006 |