Light–valley interactions in 2D semiconductors
The emergence of two-dimensional Dirac materials, particularly transition metal dichalcogenides (TMDs), has reinvigorated interest in valleytronics, which utilizes the electronic valley degree of freedom for information storage and processing. Here, we review the basic valley-dependent properties an...
Saved in:
Published in | Nature photonics Vol. 12; no. 8; pp. 451 - 460 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.08.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The emergence of two-dimensional Dirac materials, particularly transition metal dichalcogenides (TMDs), has reinvigorated interest in valleytronics, which utilizes the electronic valley degree of freedom for information storage and processing. Here, we review the basic valley-dependent properties and their experimental demonstrations in single-layer semiconductor TMDs with an emphasis on the effects of band topology and light–valley interactions. We also provide a brief summary of the recent advances on controlling the valley degree of freedom in TMDs with light and other means for potential applications.
Valleytronics in single-layer semiconductors is reviewed with an emphasis on controlling the valley degree of freedom with light as well as potential applications. |
---|---|
AbstractList | The emergence of two-dimensional Dirac materials, particularly transition metal dichalcogenides (TMDs), has reinvigorated interest in valleytronics, which utilizes the electronic valley degree of freedom for information storage and processing. Here, we review the basic valley-dependent properties and their experimental demonstrations in single-layer semiconductor TMDs with an emphasis on the effects of band topology and light–valley interactions. We also provide a brief summary of the recent advances on controlling the valley degree of freedom in TMDs with light and other means for potential applications.
Valleytronics in single-layer semiconductors is reviewed with an emphasis on controlling the valley degree of freedom with light as well as potential applications. The emergence of two-dimensional Dirac materials, particularly transition metal dichalcogenides (TMDs), has reinvigorated interest in valleytronics, which utilizes the electronic valley degree of freedom for information storage and processing. Here, we review the basic valley-dependent properties and their experimental demonstrations in single-layer semiconductor TMDs with an emphasis on the effects of band topology and light–valley interactions. We also provide a brief summary of the recent advances on controlling the valley degree of freedom in TMDs with light and other means for potential applications. Not provided. |
Author | Xiao, Di Mak, Kin Fai Shan, Jie |
Author_xml | – sequence: 1 givenname: Kin Fai surname: Mak fullname: Mak, Kin Fai email: kinfai.mak@cornell.edu organization: Department of Physics and School of Applied and Engineering Physics, Cornell University, Kavli Institute at Cornell for Nanoscale Science – sequence: 2 givenname: Di surname: Xiao fullname: Xiao, Di email: dixiao@cmu.edu organization: Department of Physics, Carnegie Mellon University – sequence: 3 givenname: Jie surname: Shan fullname: Shan, Jie email: jie.shan@cornell.edu organization: Department of Physics and School of Applied and Engineering Physics, Cornell University, Kavli Institute at Cornell for Nanoscale Science |
BackLink | https://www.osti.gov/biblio/1539841$$D View this record in Osti.gov |
BookMark | eNp9kMtKAzEUhoNUsK0-gLui69HcJskspV6h4EbXIZPJtCnTpCap0J3v4Bv6JGYYURB0lRP4v3N-vgkYOe8MAKcIXiBIxGWkqGSsgEgUEENasAMwRpxWBRUVGX3PojwCkxjXEJakwngM4MIuV-nj7f1VdZ3Zz6xLJiidrHcxf2b4ehbNxmrvmp1OPsRjcNiqLpqTr3cKnm9vnub3xeLx7mF-tSg0hVUqmpo1iCJEea1qhA3HuCZMKWpEqSrclLrSNW84Ybzskww2mGhaCYJbjElLpuBs2OtjsjJqm4xe5RrO6CRRbi8oyqHzIbQN_mVnYpJrvwsu95IYck5LjonIKTSkdPAxBtPKbbAbFfYSQdnbk4M9me3J3p5kmeG_mNxA9VpSULb7l8QDGfMVtzThp9Pf0Cfg5YRu |
CitedBy_id | crossref_primary_10_1016_j_mssp_2022_106772 crossref_primary_10_1021_acs_jpclett_2c03169 crossref_primary_10_1063_5_0058538 crossref_primary_10_1038_s41467_022_30740_7 crossref_primary_10_3390_nano14010037 crossref_primary_10_1038_s41467_019_12128_2 crossref_primary_10_1103_PhysRevB_103_224426 crossref_primary_10_1364_OE_27_037131 crossref_primary_10_1038_s41565_023_01492_2 crossref_primary_10_1039_D3NR05562K crossref_primary_10_1016_j_jmmm_2021_167870 crossref_primary_10_1021_jacs_1c06246 crossref_primary_10_1364_OE_490067 crossref_primary_10_1007_s40042_022_00401_5 crossref_primary_10_1103_PhysRevB_107_115428 crossref_primary_10_1038_s42254_019_0110_y crossref_primary_10_1364_AOP_504035 crossref_primary_10_1103_PhysRevB_111_L081401 crossref_primary_10_1103_PhysRevB_104_165411 crossref_primary_10_1088_2516_1075_ac421f crossref_primary_10_1557_s43578_022_00843_4 crossref_primary_10_1021_acs_nanolett_2c00824 crossref_primary_10_1038_s41377_020_00430_4 crossref_primary_10_1002_smll_202006425 crossref_primary_10_1002_adfm_202104192 crossref_primary_10_1021_acsami_3c18898 crossref_primary_10_1002_adfm_202407749 crossref_primary_10_1088_1674_4926_44_1_012001 crossref_primary_10_1063_PT_3_4567 crossref_primary_10_3938_jkps_76_221 crossref_primary_10_1103_PhysRevB_107_155431 crossref_primary_10_1021_acs_jpclett_2c01090 crossref_primary_10_3390_mi14051060 crossref_primary_10_1038_s41699_020_00183_z crossref_primary_10_1038_s42005_019_0277_7 crossref_primary_10_1088_1361_648X_ad13d7 crossref_primary_10_1021_acs_nanolett_0c01173 crossref_primary_10_1073_pnas_2307611120 crossref_primary_10_1021_acs_nanolett_3c01698 crossref_primary_10_1103_PhysRevB_103_125121 crossref_primary_10_1063_5_0072266 crossref_primary_10_1103_PhysRevB_103_035308 crossref_primary_10_1007_s10825_020_01602_6 crossref_primary_10_3390_mi14020307 crossref_primary_10_1021_acsphotonics_2c00692 crossref_primary_10_1038_s41467_019_12129_1 crossref_primary_10_1103_PhysRevApplied_19_034056 crossref_primary_10_1063_5_0121316 crossref_primary_10_3390_nano14010056 crossref_primary_10_1103_PhysRevB_101_165103 crossref_primary_10_3390_met9020122 crossref_primary_10_1063_5_0139880 crossref_primary_10_1002_smtd_202101435 crossref_primary_10_1002_adma_201904132 crossref_primary_10_1021_acs_nanolett_3c01904 crossref_primary_10_1038_s41467_021_25747_5 crossref_primary_10_1016_j_physb_2024_416402 crossref_primary_10_1021_acsami_3c11564 crossref_primary_10_1103_PhysRevB_107_035416 crossref_primary_10_35848_1347_4065_ac825c crossref_primary_10_1038_s41565_020_0764_8 crossref_primary_10_1021_acs_nanolett_2c03791 crossref_primary_10_1515_nanoph_2018_0185 crossref_primary_10_1039_D4NR03682D crossref_primary_10_1007_s10854_021_07049_0 crossref_primary_10_1002_qute_201800111 crossref_primary_10_1103_PhysRevB_108_059904 crossref_primary_10_1002_smm2_1013 crossref_primary_10_1016_j_scib_2019_06_021 crossref_primary_10_1103_PhysRevB_102_125414 crossref_primary_10_1126_science_adg0014 crossref_primary_10_1038_s41586_023_05800_7 crossref_primary_10_1364_OL_44_004139 crossref_primary_10_1016_j_physrep_2022_09_005 crossref_primary_10_1038_s41566_019_0399_1 crossref_primary_10_1002_adma_202004111 crossref_primary_10_1021_acsnano_1c02381 crossref_primary_10_1007_s11431_022_2414_5 crossref_primary_10_1063_5_0062124 crossref_primary_10_1103_PhysRevLett_131_246301 crossref_primary_10_1103_PhysRevB_109_155416 crossref_primary_10_1002_lpor_202300185 crossref_primary_10_1038_s41467_021_24272_9 crossref_primary_10_1103_PhysRevB_105_064423 crossref_primary_10_1038_s41524_021_00531_7 crossref_primary_10_1103_PhysRevB_110_104108 crossref_primary_10_1088_1361_6528_ab60ca crossref_primary_10_1088_1361_6463_ac8da0 crossref_primary_10_1103_PhysRevB_101_161409 crossref_primary_10_1364_OL_455569 crossref_primary_10_1021_acs_nanolett_3c05052 crossref_primary_10_1039_D3CP05127G crossref_primary_10_1021_acs_jpclett_2c02794 crossref_primary_10_1088_1367_2630_abd205 crossref_primary_10_1063_5_0145789 crossref_primary_10_1016_j_mtphys_2022_100649 crossref_primary_10_1038_s41565_020_0644_2 crossref_primary_10_1103_PhysRevLett_126_056601 crossref_primary_10_1088_1361_6633_ac45f9 crossref_primary_10_1002_advs_202408640 crossref_primary_10_1038_s41586_020_2085_3 crossref_primary_10_1002_advs_202203588 crossref_primary_10_1209_0295_5075_ac2653 crossref_primary_10_1021_acs_chemrev_2c00800 crossref_primary_10_1021_acsphotonics_0c00174 crossref_primary_10_1103_PhysRevB_99_085421 crossref_primary_10_1103_PhysRevLett_124_217403 crossref_primary_10_1039_D4NR03769C crossref_primary_10_1103_PhysRevB_108_L041404 crossref_primary_10_1103_PhysRevB_103_235402 crossref_primary_10_1038_s42254_022_00447_1 crossref_primary_10_1038_s41467_022_35396_x crossref_primary_10_1088_1674_4926_44_1_011901 crossref_primary_10_1126_sciadv_adf3673 crossref_primary_10_1088_2053_1583_ab6ff7 crossref_primary_10_1021_acsnano_1c10607 crossref_primary_10_1103_PhysRevB_101_195407 crossref_primary_10_1038_s41598_022_18104_z crossref_primary_10_1186_s40580_019_0213_2 crossref_primary_10_1021_acs_nanolett_1c02290 crossref_primary_10_1103_PhysRevB_109_195418 crossref_primary_10_1126_sciadv_abp8135 crossref_primary_10_1016_j_jssc_2022_123106 crossref_primary_10_1021_acsnano_9b01876 crossref_primary_10_1088_1361_648X_ad0d26 crossref_primary_10_1002_advs_202304792 crossref_primary_10_1038_s41563_023_01645_7 crossref_primary_10_1039_D4CP03519D crossref_primary_10_34133_2020_5464258 crossref_primary_10_1038_s41467_020_14472_0 crossref_primary_10_1103_PhysRevB_109_165101 crossref_primary_10_1016_j_actamat_2023_118731 crossref_primary_10_1038_s41566_019_0428_0 crossref_primary_10_1103_PhysRevB_103_014309 crossref_primary_10_1002_adma_202003240 crossref_primary_10_1515_nanoph_2023_0175 crossref_primary_10_1038_s41586_024_07244_z crossref_primary_10_1016_j_optmat_2021_111331 crossref_primary_10_1039_D1TC02837E crossref_primary_10_1103_PhysRevB_110_115303 crossref_primary_10_1088_1361_6633_abdb98 crossref_primary_10_1103_PhysRevB_108_075109 crossref_primary_10_1515_nanoph_2020_0226 crossref_primary_10_1038_s41565_022_01309_8 crossref_primary_10_1103_PhysRevB_101_041405 crossref_primary_10_1016_j_photonics_2020_100783 crossref_primary_10_1039_D3NR04188C crossref_primary_10_1038_s41565_022_01115_2 crossref_primary_10_1007_s40843_022_2138_x crossref_primary_10_1007_s11467_023_1386_z crossref_primary_10_1103_PhysRevLett_124_257403 crossref_primary_10_1021_acs_chemmater_1c04066 crossref_primary_10_1039_D0CP05951J crossref_primary_10_1360_SSPMA_2022_0442 crossref_primary_10_1002_advs_202206191 crossref_primary_10_1002_pssa_202200156 crossref_primary_10_1021_acs_chemrev_1c00735 crossref_primary_10_1063_5_0240071 crossref_primary_10_1080_23746149_2020_1749883 crossref_primary_10_1002_adom_202102226 crossref_primary_10_1063_5_0242014 crossref_primary_10_1088_1361_6528_ac0dd8 crossref_primary_10_1103_PhysRevB_108_045146 crossref_primary_10_1103_PhysRevMaterials_6_114002 crossref_primary_10_1021_acs_jpclett_1c03742 crossref_primary_10_1103_PhysRevResearch_3_043198 crossref_primary_10_1088_1361_648X_ac6649 crossref_primary_10_1557_s43577_024_00837_z crossref_primary_10_1002_aelm_202100196 crossref_primary_10_1021_jacs_0c05057 crossref_primary_10_1038_s41565_022_01165_6 crossref_primary_10_1038_s44310_024_00028_3 crossref_primary_10_1103_PhysRevLett_124_197401 crossref_primary_10_34133_2019_6494565 crossref_primary_10_1007_s12274_019_2497_2 crossref_primary_10_1126_science_adh1506 crossref_primary_10_1021_acs_jpcc_2c04332 crossref_primary_10_1063_5_0103383 crossref_primary_10_1364_PRJ_447029 crossref_primary_10_1103_PhysRevB_109_035408 crossref_primary_10_1039_D3NR05643K crossref_primary_10_1038_s41377_020_0284_1 crossref_primary_10_1016_j_nanoen_2023_108550 crossref_primary_10_1038_s41467_024_48522_8 crossref_primary_10_1021_acs_jpcc_4c00516 crossref_primary_10_1039_D3NR00346A crossref_primary_10_1088_2053_1583_abb5eb crossref_primary_10_1002_lpor_201800327 crossref_primary_10_1016_j_sse_2019_03_002 crossref_primary_10_1021_acs_cgd_4c00477 crossref_primary_10_1103_PhysRevApplied_22_054064 crossref_primary_10_1088_1361_6463_abaa14 crossref_primary_10_1088_2399_6528_aca270 crossref_primary_10_1016_j_mtphys_2022_100839 crossref_primary_10_1038_s41467_022_33822_8 crossref_primary_10_1039_D1NR04868F crossref_primary_10_1007_s11467_024_1425_4 crossref_primary_10_1021_acs_jpcc_0c05037 crossref_primary_10_1088_2053_1583_acb21c crossref_primary_10_1088_2053_1583_ad7c5f crossref_primary_10_1063_5_0221551 crossref_primary_10_1038_s41377_021_00500_1 crossref_primary_10_1021_acsnano_0c03624 crossref_primary_10_1038_s42005_022_01044_5 crossref_primary_10_1364_OL_421049 crossref_primary_10_1038_s41598_020_74376_3 crossref_primary_10_1103_PhysRevB_101_245412 crossref_primary_10_1088_1674_1056_ac11d2 crossref_primary_10_1103_PhysRevB_109_085406 crossref_primary_10_1002_nano_202000138 crossref_primary_10_1021_acsnano_2c02981 crossref_primary_10_1088_2053_1583_ab4171 crossref_primary_10_1039_D4CP00318G crossref_primary_10_1103_PhysRevB_111_035446 crossref_primary_10_1063_5_0254488 crossref_primary_10_1021_acs_nanolett_9b04836 crossref_primary_10_1021_acs_jpcc_1c04724 crossref_primary_10_1103_PhysRevLett_123_036806 crossref_primary_10_1002_admi_202202208 crossref_primary_10_1038_s41377_020_00387_4 crossref_primary_10_1103_PhysRevLett_124_037701 crossref_primary_10_1063_5_0085850 crossref_primary_10_1103_PhysRevB_100_041406 crossref_primary_10_1021_acsomega_2c05426 crossref_primary_10_1039_D4NA00759J crossref_primary_10_1021_acs_langmuir_2c03101 crossref_primary_10_1039_D2CP04397A crossref_primary_10_1063_1_5143119 crossref_primary_10_1021_acs_nanolett_0c04152 crossref_primary_10_3390_nano14020133 crossref_primary_10_1038_s41586_023_06101_9 crossref_primary_10_1103_PhysRevB_111_125154 crossref_primary_10_3390_ma17133331 crossref_primary_10_1016_j_matdes_2021_110185 crossref_primary_10_1039_D4NR00011K crossref_primary_10_1002_adom_202403137 crossref_primary_10_1039_D2CP05999A crossref_primary_10_1002_andp_202000015 crossref_primary_10_1515_nanoph_2019_0564 crossref_primary_10_1002_lpor_202400545 crossref_primary_10_1021_acs_chemrev_3c00851 crossref_primary_10_1002_adfm_201904734 crossref_primary_10_1103_PhysRevB_109_165441 crossref_primary_10_1021_acs_jpclett_4c01433 crossref_primary_10_1557_s43579_024_00676_8 crossref_primary_10_1038_s41467_024_48725_z crossref_primary_10_1038_s41377_024_01737_2 crossref_primary_10_1103_PhysRevLett_127_149701 crossref_primary_10_3390_nano14151295 crossref_primary_10_1103_PhysRevB_109_224506 crossref_primary_10_1016_j_physe_2022_115520 crossref_primary_10_1364_PRJ_542666 crossref_primary_10_1021_acs_nanolett_2c03947 crossref_primary_10_1103_PhysRevMaterials_5_044001 crossref_primary_10_1515_nanoph_2021_0800 crossref_primary_10_7498_aps_71_20220054 crossref_primary_10_1002_asia_202200265 crossref_primary_10_3390_molecules27092807 crossref_primary_10_1039_D0NR08000D crossref_primary_10_1007_s11433_019_1436_4 crossref_primary_10_1364_OL_44_002141 crossref_primary_10_1103_PhysRevB_108_195429 crossref_primary_10_1103_PhysRevB_103_075122 crossref_primary_10_1021_acsaelm_3c01328 crossref_primary_10_1038_s41467_020_17517_6 crossref_primary_10_1088_2752_5724_ad8cf2 crossref_primary_10_1007_s11467_023_1295_1 crossref_primary_10_1007_s12274_020_2652_9 crossref_primary_10_1364_OE_422584 crossref_primary_10_1016_j_nanoen_2020_104678 crossref_primary_10_1103_PhysRevB_105_195421 crossref_primary_10_1021_acsnano_8b09659 crossref_primary_10_1039_D1CP00250C crossref_primary_10_3390_photonics11040358 crossref_primary_10_1515_nanoph_2018_0041 crossref_primary_10_1002_inf2_12096 crossref_primary_10_2139_ssrn_4013422 crossref_primary_10_1088_1361_6528_ac50f2 crossref_primary_10_1021_acs_nanolett_8b03967 crossref_primary_10_1103_PhysRevB_99_125405 crossref_primary_10_1364_OPTICA_458991 crossref_primary_10_1063_5_0051394 crossref_primary_10_1364_AOP_454797 crossref_primary_10_1002_adom_202301948 crossref_primary_10_1038_s42254_020_00276_0 crossref_primary_10_1021_acsami_3c03002 crossref_primary_10_3390_ma16103701 crossref_primary_10_1364_JOSAB_421279 crossref_primary_10_1103_PhysRevB_103_L140404 crossref_primary_10_1038_s41578_022_00440_1 crossref_primary_10_1038_s41598_020_73138_5 crossref_primary_10_1002_adfm_202204779 crossref_primary_10_1002_apxr_202300062 crossref_primary_10_1088_1367_2630_acb22e crossref_primary_10_1103_PhysRevB_100_161404 crossref_primary_10_1063_5_0242426 crossref_primary_10_1088_1674_4926_44_1_010301 crossref_primary_10_1016_j_trechm_2019_07_007 crossref_primary_10_1039_D3TC04255C crossref_primary_10_1016_j_mattod_2024_03_014 crossref_primary_10_1021_acs_jpclett_9b00217 crossref_primary_10_1007_s12274_020_2809_6 crossref_primary_10_1103_PhysRevLett_122_123903 crossref_primary_10_1515_nanoph_2023_0368 crossref_primary_10_1002_smll_201904271 crossref_primary_10_1002_adma_202200656 crossref_primary_10_1038_s41524_021_00632_3 crossref_primary_10_1021_acsnano_4c11080 crossref_primary_10_1103_PhysRevB_111_085402 crossref_primary_10_1103_PhysRevLett_128_176601 crossref_primary_10_1002_qute_202100162 crossref_primary_10_1038_s41467_020_20545_x crossref_primary_10_1103_PhysRevLett_134_046403 crossref_primary_10_1007_s12274_020_3036_x crossref_primary_10_1021_acs_nanolett_2c04604 crossref_primary_10_1002_adfm_202010234 crossref_primary_10_1364_OL_487201 crossref_primary_10_1021_acsnano_0c00218 crossref_primary_10_1088_1361_648X_aca24f crossref_primary_10_1002_adom_202101772 crossref_primary_10_1063_1_5115093 crossref_primary_10_1021_acsami_1c06622 crossref_primary_10_1016_j_cpc_2023_109001 crossref_primary_10_1002_pssr_202000008 crossref_primary_10_1364_OE_540784 crossref_primary_10_1002_adfm_202213933 crossref_primary_10_1002_adma_202204908 crossref_primary_10_1021_acsnano_0c05343 crossref_primary_10_1039_D0TC01322F crossref_primary_10_1007_s40843_021_1832_2 crossref_primary_10_1021_acsaelm_1c00366 crossref_primary_10_1021_acs_jpclett_2c01034 crossref_primary_10_1038_s41467_024_53425_9 crossref_primary_10_1038_s41563_019_0294_7 crossref_primary_10_1103_PhysRevB_108_155431 crossref_primary_10_1088_1361_6463_acbcde crossref_primary_10_1088_1361_6528_abd507 crossref_primary_10_1021_acs_nanolett_2c01442 crossref_primary_10_1002_pssr_202100571 crossref_primary_10_1103_PhysRevB_101_125423 crossref_primary_10_1103_PhysRevLett_123_097403 crossref_primary_10_1103_PhysRevB_105_085302 crossref_primary_10_1103_PhysRevX_14_011004 crossref_primary_10_1126_sciadv_abn3837 crossref_primary_10_1088_1674_1056_ad6077 crossref_primary_10_1007_s11467_023_1355_6 crossref_primary_10_3390_photonics10101126 crossref_primary_10_1103_PhysRevB_105_L121403 crossref_primary_10_7498_aps_72_20222080 |
Cites_doi | 10.1126/science.aac7820 10.1073/pnas.1519086113 10.1103/PhysRevLett.120.063902 10.1038/ncomms10643 10.1103/PhysRevLett.112.047401 10.1103/PhysRevLett.118.237404 10.1126/sciadv.1603113 10.1103/PhysRevLett.119.137401 10.1103/PhysRevLett.120.077401 10.1038/nature13734 10.1126/science.1251329 10.1038/natrevmats.2016.55 10.1021/acs.nanolett.6b01727 10.1103/PhysRevLett.106.116803 10.1103/PhysRevLett.120.187401 10.1038/nnano.2017.106 10.1103/PhysRevB.93.041413 10.1021/acs.nanolett.6b03855 10.1126/science.1254966 10.1103/PhysRevLett.120.066402 10.1126/science.1250140 10.1103/PhysRevLett.110.066803 10.1038/nphys2524 10.1038/nnano.2017.105 10.1103/PhysRevLett.118.247701 10.1103/PhysRevLett.120.087402 10.1038/s41563-018-0036-2 10.1103/PhysRevLett.99.236809 10.1103/PhysRevLett.120.057405 10.1038/nmat4061 10.1103/PhysRevB.95.125420 10.1103/RevModPhys.82.1959 10.1038/nnano.2017.68 10.1126/sciadv.1700518 10.1021/nn5059908 10.1038/nphys3201 10.1088/1367-2630/18/2/025012 10.1063/1.3636402 10.1021/acs.nanolett.7b03667 10.1103/PhysRevB.77.235406 10.1038/nnano.2012.96 10.1038/nnano.2013.151 10.1021/nl403742j 10.1088/2053-1583/2/3/034002 10.1103/PhysRevLett.115.166803 10.1038/nmat4787 10.1126/science.1105514 10.1103/PhysRevLett.116.086601 10.1103/PhysRevB.86.081301 10.1126/science.1258122 10.1103/PhysRevLett.114.256601 10.1038/nphys4146 10.1038/nmat4979 10.1038/nnano.2015.70 10.1103/PhysRevB.92.235425 10.1103/PhysRevLett.115.166802 10.1103/PhysRevLett.96.236801 10.1103/PhysRevLett.117.187401 10.1038/nmat3505 10.1038/nnano.2016.213 10.1038/nmat3694 10.1103/PhysRevLett.105.136805 10.1038/nphys2942 10.1038/nphoton.2015.282 10.1038/nnano.2016.49 10.1103/PhysRevLett.111.216805 10.1038/nphys3674 10.1103/PhysRevB.92.085413 10.1103/PhysRevB.94.041301 10.1038/nphys3324 10.1038/nphys2111 10.1103/PhysRevB.88.085433 10.1103/PhysRevB.88.115140 10.1038/nmat4356 10.1038/nphoton.2017.86 10.1038/nnano.2015.337 10.1038/nphys3203 10.1103/PhysRevB.92.125417 10.1103/PhysRevLett.118.096602 10.1038/natrevmats.2017.33 10.1038/nphys3551 10.1038/nmat4931 10.1103/PhysRevLett.114.037401 10.1103/PhysRevB.90.161302 10.1103/RevModPhys.76.323 10.1038/nnano.2012.95 10.1103/PhysRevB.86.115409 10.1126/science.aal2241 10.1103/PhysRevB.93.205423 10.1103/PhysRevLett.113.076802 10.1103/PhysRevLett.108.196802 10.1038/nphys3419 10.1021/nl903868w 10.1103/PhysRevLett.117.257402 10.1103/PhysRevLett.113.266804 10.1038/nmat4156 10.1038/s41565-017-0030-x 10.1038/nature22060 10.1038/nphys3891 10.1038/nature22391 10.1038/nphys3485 10.1103/PhysRevLett.97.186404 10.1103/PhysRevLett.113.026803 10.1103/PhysRevLett.114.097403 10.1103/PhysRevB.90.075413 10.1103/PhysRevB.91.075310 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2018 Copyright Nature Publishing Group Aug 2018 |
Copyright_xml | – notice: Springer Nature Limited 2018 – notice: Copyright Nature Publishing Group Aug 2018 |
CorporateAuthor | Univ. of Washington, Seattle, WA (United States) Pennsylvania State Univ., University Park, PA (United States) |
CorporateAuthor_xml | – name: Pennsylvania State Univ., University Park, PA (United States) – name: Univ. of Washington, Seattle, WA (United States) |
DBID | AAYXX CITATION 7QO 7SP 7U5 8FD 8FE 8FG 8FH AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ H8D HCIFZ L7M LK8 M7P P5Z P62 P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS OTOTI |
DOI | 10.1038/s41566-018-0204-6 |
DatabaseName | CrossRef Biotechnology Research Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student Aerospace Database SciTech Collection (ProQuest) Advanced Technologies Database with Aerospace Biological Sciences Biological Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China OSTI.GOV |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1749-4893 |
EndPage | 460 |
ExternalDocumentID | 1539841 10_1038_s41566_018_0204_6 |
GroupedDBID | -~X 0R~ 123 29M 39C 4.4 5M7 5S5 70F 8FE 8FG 8FH 8R4 8R5 AARCD AAYZH ABAWZ ABDBF ABFSG ABJNI ABLJU ABZEH ACBWK ACGFS ACIWK ACPRK ACSTC ACUHS ADBBV AENEX AEUYN AEZWR AFANA AFBBN AFHIU AFKRA AFRAH AFSHS AFWHJ AGAYW AHBCP AHOSX AHSBF AHWEU AIBTJ AIXLP ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD ARAPS ARMCB ASPBG ATHPR AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO CCPQU CS3 DU5 EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE HCIFZ HVGLF HZ~ I-F LK8 M7P NFIDA NNMJJ O9- ODYON P2P P62 PHGZM PHGZT PQGLB Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX CITATION 7QO 7SP 7U5 8FD AZQEC DWQXO FR3 GNUQQ H8D L7M P64 PKEHL PQEST PQQKQ PQUKI PRINS 5BI AADEA AADWK AAEEF AAEXX AAJMP AAPBV AAYJO AAZLF ABEEJ ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AGHTU AHGBK AJDOV NYICJ OTOTI |
ID | FETCH-LOGICAL-c409t-db6d141147bab12e722b36aa4e85a92d5c9cb7d736756d1460d23c49832f223f3 |
IEDL.DBID | BENPR |
ISSN | 1749-4885 |
IngestDate | Fri May 19 02:14:05 EDT 2023 Wed Jul 16 16:17:40 EDT 2025 Tue Jul 01 03:06:57 EDT 2025 Thu Apr 24 23:02:30 EDT 2025 Mon Jul 21 06:06:48 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-db6d141147bab12e722b36aa4e85a92d5c9cb7d736756d1460d23c49832f223f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Literature Review-2 USDOE Office of Science (SC) SC0012509; SC0013883 |
PQID | 2077457238 |
PQPubID | 546300 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1539841 proquest_journals_2077457238 crossref_primary_10_1038_s41566_018_0204_6 crossref_citationtrail_10_1038_s41566_018_0204_6 springer_journals_10_1038_s41566_018_0204_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-01 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Nature photonics |
PublicationTitleAbbrev | Nature Photon |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Lee, Wang, Xie, Mak, Shan (CR23) 2017; 16 Srivastava (CR59) 2015; 11 Kumar (CR105) 2016; 93 Takashina, Ono, Fujiwara, Takahashi, Hirayama (CR1) 2006; 96 Tzuhsuan, Gennady (CR107) 2016; 18 An (CR94) 2017; 118 Kim (CR83) 2017; 3 Aivazian (CR58) 2015; 11 Gunawan (CR3) 2006; 97 Yao, Xiao, Niu (CR6) 2008; 77 Lee, Mak, Shan (CR22) 2016; 11 Kato, Myers, Gossard, Awschalom (CR24) 2004; 306 Sie, Frenzel, Lee, Kong, Gedik (CR46) 2015; 92 Berkelbach, Hybertsen, Reichman (CR55) 2015; 92 Gustafsson (CR65) 2018; 17 Kim (CR89) 2014; 346 Wu (CR25) 2013; 9 Gorbachev (CR98) 2014; 346 Mecklenburg, Regan (CR27) 2011; 106 Li, Zhang, Niu (CR69) 2013; 110 Ye (CR39) 2014; 513 Jones (CR44) 2013; 8 Zeng, Dai, Yao, Xiao, Cui (CR33) 2012; 7 Sie (CR91) 2017; 355 Poellmann (CR77) 2015; 14 Hao (CR86) 2016; 12 Wang, Chiu, Honz, Mak, Shan (CR108) 2018; 18 Sie (CR90) 2015; 14 Qiu, da Jornada, Louie (CR51) 2013; 111 Mak, He, Shan, Heinz (CR34) 2012; 7 Back (CR63) 2017; 118 Zhong (CR67) 2017; 3 MacNeill (CR56) 2015; 114 Wang (CR97) 2018; 13 Wang (CR60) 2015; 2 Xiao, Liu, Feng, Xu, Yao (CR7) 2012; 108 Žutić, Fabian, Das Sarma (CR36) 2004; 76 CR52 Zhao (CR66) 2017; 12 Singh (CR79) 2016; 117 Srivastava, Imamoğlu (CR31) 2015; 115 Trushin, Goerbig, Belzig (CR50) 2016; 94 Wang, Zhao, Mak, Shan (CR61) 2017; 17 Chen, Cain, Stanev, Dravid, Stern (CR103) 2017; 11 Jia, Xu, Hasan (CR9) 2016; 15 Zhang, Oka, Suzuki, Ye, Iwasa (CR93) 2014; 344 Mak, Lee, Hone, Shan, Heinz (CR13) 2010; 105 Movva (CR62) 2017; 118 Lensky, Song, Samutpraphoot, Levitov (CR20) 2015; 114 Xiao, Yao, Niu (CR5) 2007; 99 You (CR45) 2015; 11 Gong, Yu, Wang, Yao (CR30) 2017; 95 Korn, Heydrich, Hirmer, Schmutzler, Schüller (CR74) 2011; 99 Ugeda (CR41) 2014; 13 Cao (CR8) 2012; 3 Zhou (CR88) 2017; 12 Cai (CR68) 2013; 88 Shang (CR47) 2015; 9 He (CR38) 2014; 113 Splendiani (CR12) 2010; 10 Mai (CR72) 2014; 14 Sui (CR100) 2015; 11 Wang, Mak, Shan (CR64) 2017; 120 Yu, Yao (CR95) 2017; 16 Mak (CR42) 2013; 12 Cui (CR14) 2015; 10 Mak, McGill, Park, McEuen (CR21) 2014; 344 Dey (CR84) 2017; 119 Xu, Yao, Xiao, Heinz (CR16) 2014; 10 Rivera (CR80) 2016; 351 Song, Rudner (CR104) 2016; 113 Huang (CR102) 2017; 546 Wang (CR92) 2016; 117 Song, Xie, Kang, Park, Sih (CR82) 2016; 16 Gong (CR101) 2017; 546 Zhu (CR71) 2014; 90 Noh, Huang, Chen, Rechtsman (CR106) 2017; 120 Cao, Wu, Louie (CR28) 2018; 120 Wang (CR75) 2014; 90 Ye (CR96) 2016; 11 Wang, Shan, Mak (CR70) 2017; 12 Lagarde (CR76) 2014; 112 Schaibley (CR18) 2016; 1 Yang (CR81) 2015; 11 Manzeli, Ovchinnikov, Pasquier, Yazyev, Kis (CR17) 2017; 2 Dal Conte (CR73) 2015; 92 Stier, McCreary, Jonker, Kono, Crooker (CR48) 2016; 7 Sallen (CR35) 2012; 86 Fallahazad (CR15) 2016; 116 Wang (CR40) 2015; 114 Liu, Shan, Yao, Yao, Xiao (CR26) 2013; 88 Shimazaki (CR99) 2015; 11 Stier (CR49) 2017; 120 Ramasubramaniam (CR53) 2012; 86 Mak, Shan (CR11) 2016; 10 Xiao, Chang, Niu (CR19) 2010; 82 Wu, Qu, MacDonald (CR54) 2015; 91 Ye, Sun, Heinz (CR85) 2017; 13 Zhu, Collaudin, Fauque, Kang, Behnia (CR4) 2012; 8 Ross (CR43) 2013; 4 Isberg (CR2) 2013; 12 Zhang, Shan, Xiao (CR29) 2018; 120 Ma (CR10) 2017; 13 Zhou, Shan, Yao, Xiao (CR32) 2015; 115 Li (CR57) 2014; 113 Robert (CR78) 2016; 93 Zhang (CR87) 2017; 12 Chernikov (CR37) 2014; 113 A Splendiani (204_CR12) 2010; 10 EJ Sie (204_CR90) 2015; 14 J Noh (204_CR106) 2017; 120 204_CR52 D Xiao (204_CR5) 2007; 99 T Cai (204_CR68) 2013; 88 Y Li (204_CR57) 2014; 113 T Cao (204_CR28) 2018; 120 G Wang (204_CR60) 2015; 2 A Ramasubramaniam (204_CR53) 2012; 86 J Zhou (204_CR32) 2015; 115 I Žutić (204_CR36) 2004; 76 Z Wang (204_CR61) 2017; 17 A Srivastava (204_CR31) 2015; 115 JR Schaibley (204_CR18) 2016; 1 A Srivastava (204_CR59) 2015; 11 Y Ye (204_CR96) 2016; 11 S Manzeli (204_CR17) 2017; 2 YJ Chen (204_CR103) 2017; 11 M Sui (204_CR100) 2015; 11 AV Stier (204_CR48) 2016; 7 CR Zhu (204_CR71) 2014; 90 KF Mak (204_CR42) 2013; 12 F Wu (204_CR54) 2015; 91 Z Zhu (204_CR4) 2012; 8 G Aivazian (204_CR58) 2015; 11 T Korn (204_CR74) 2011; 99 A Chernikov (204_CR37) 2014; 113 D Lagarde (204_CR76) 2014; 112 Z Wang (204_CR70) 2017; 12 P Back (204_CR63) 2017; 118 KF Mak (204_CR13) 2010; 105 P Gong (204_CR30) 2017; 95 J Lee (204_CR22) 2016; 11 G Sallen (204_CR35) 2012; 86 G Wang (204_CR40) 2015; 114 X Zhang (204_CR29) 2018; 120 B Huang (204_CR102) 2017; 546 Y You (204_CR45) 2015; 11 M Tzuhsuan (204_CR107) 2016; 18 J Lee (204_CR23) 2017; 16 D MacNeill (204_CR56) 2015; 114 EJ Sie (204_CR91) 2017; 355 A Kumar (204_CR105) 2016; 93 S Jia (204_CR9) 2016; 15 XX Zhang (204_CR87) 2017; 12 S Dal Conte (204_CR73) 2015; 92 B Fallahazad (204_CR15) 2016; 116 MV Gustafsson (204_CR65) 2018; 17 C Zhao (204_CR66) 2017; 12 D Zhong (204_CR67) 2017; 3 C Robert (204_CR78) 2016; 93 P Dey (204_CR84) 2017; 119 K Takashina (204_CR1) 2006; 96 Z Ye (204_CR85) 2017; 13 M Mecklenburg (204_CR27) 2011; 106 Z Ye (204_CR39) 2014; 513 YJ Zhang (204_CR93) 2014; 344 S Wu (204_CR25) 2013; 9 C Gong (204_CR101) 2017; 546 C Mai (204_CR72) 2014; 14 JS Ross (204_CR43) 2013; 4 T Cao (204_CR8) 2012; 3 GB Liu (204_CR26) 2013; 88 C Poellmann (204_CR77) 2015; 14 AV Stier (204_CR49) 2017; 120 X Li (204_CR69) 2013; 110 M Trushin (204_CR50) 2016; 94 X Song (204_CR82) 2016; 16 K Hao (204_CR86) 2016; 12 O Gunawan (204_CR3) 2006; 97 K He (204_CR38) 2014; 113 G Wang (204_CR75) 2014; 90 KF Mak (204_CR11) 2016; 10 X Cui (204_CR14) 2015; 10 H Yu (204_CR95) 2017; 16 Z Wang (204_CR108) 2018; 18 MM Ugeda (204_CR41) 2014; 13 Y Shimazaki (204_CR99) 2015; 11 X Xu (204_CR16) 2014; 10 RV Gorbachev (204_CR98) 2014; 346 D Xiao (204_CR19) 2010; 82 H Zeng (204_CR33) 2012; 7 Q Ma (204_CR10) 2017; 13 KF Mak (204_CR21) 2014; 344 KF Mak (204_CR34) 2012; 7 JCW Song (204_CR104) 2016; 113 YD Lensky (204_CR20) 2015; 114 DY Qiu (204_CR51) 2013; 111 L Yang (204_CR81) 2015; 11 W Yao (204_CR6) 2008; 77 A Singh (204_CR79) 2016; 117 Z Wang (204_CR64) 2017; 120 TC Berkelbach (204_CR55) 2015; 92 AM Jones (204_CR44) 2013; 8 Y Zhou (204_CR88) 2017; 12 HCP Movva (204_CR62) 2017; 118 EJ Sie (204_CR46) 2015; 92 J Shang (204_CR47) 2015; 9 D Xiao (204_CR7) 2012; 108 J Kim (204_CR83) 2017; 3 YK Kato (204_CR24) 2004; 306 J Kim (204_CR89) 2014; 346 P Rivera (204_CR80) 2016; 351 G Wang (204_CR92) 2016; 117 J Isberg (204_CR2) 2013; 12 K Wang (204_CR97) 2018; 13 XT An (204_CR94) 2017; 118 |
References_xml | – volume: 92 start-page: 125417 year: 2015 ident: CR46 article-title: Intervalley biexcitons and many-body effects in monolayer MoS publication-title: Phys. Rev. B – volume: 11 start-page: 148 year: 2015 end-page: 152 ident: CR58 article-title: Magnetic control of valley pseudospin in monolayer WSe publication-title: Nat. Phys. – volume: 97 start-page: 186404 year: 2006 ident: CR3 article-title: Valley susceptibility of an interacting two-dimensional electron system publication-title: Phys. Rev. Lett. – volume: 3 year: 2012 ident: CR8 article-title: Valley-selective circular dichroism of monolayer molybdenum disulphide publication-title: Nat. Commun. – volume: 118 start-page: 096602 year: 2017 ident: CR94 article-title: Realization of valley and spin pumps by scattering at nonmagnetic disorders publication-title: Phys. Rev. Lett. – volume: 88 start-page: 085433 year: 2013 ident: CR26 article-title: Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides publication-title: Phys. Rev. B – volume: 306 start-page: 1910 year: 2004 end-page: 1913 ident: CR24 article-title: Observation of the spin Hall effect in semiconductors publication-title: Science – volume: 91 start-page: 075310 year: 2015 ident: CR54 article-title: Exciton band structure of monolayer MoS publication-title: Phys. Rev. B – volume: 12 start-page: 760 year: 2013 end-page: 764 ident: CR2 article-title: Generation, transport and detection of valley-polarized electrons in diamond publication-title: Nat. Mater. – volume: 115 start-page: 166802 year: 2015 ident: CR31 article-title: Signatures of Bloch-band geometry on excitons: nonhydrogenic spectra in transition-metal dichalcogenides publication-title: Phys. Rev. Lett. – volume: 513 start-page: 214 year: 2014 end-page: 218 ident: CR39 article-title: Probing excitonic dark states in single-layer tungsten disulphide publication-title: Nature – volume: 120 start-page: 066402 year: 2017 ident: CR64 article-title: Strongly interaction-enhanced valley magnetic response in monolayer WSe publication-title: Phys. Rev. Lett. – volume: 99 start-page: 102109 year: 2011 ident: CR74 article-title: Low-temperature photocarrier dynamics in monolayer MoS publication-title: Appl. Phys. Lett. – volume: 13 start-page: 26 year: 2017 end-page: 29 ident: CR85 article-title: Optical manipulation of valley pseudospin publication-title: Nat. Phys. – volume: 7 start-page: 494 year: 2012 end-page: 498 ident: CR34 article-title: Control of valley polarization in monolayer MoS by optical helicity publication-title: Nat. Nanotech. – volume: 111 start-page: 216805 year: 2013 ident: CR51 article-title: Optical spectrum of MoS : many-body effects and diversity of exciton states publication-title: Phys. Rev. Lett. – volume: 7 year: 2016 ident: CR48 article-title: Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS and MoS to 65 Tesla publication-title: Nat. Commun. – volume: 344 start-page: 1489 year: 2014 end-page: 1492 ident: CR21 article-title: The valley Hall effect in MoS transistors publication-title: Science – volume: 546 start-page: 265 year: 2017 end-page: 269 ident: CR101 article-title: Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals publication-title: Nature – volume: 12 start-page: 856 year: 2017 end-page: 860 ident: CR88 article-title: Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons publication-title: Nat. Nanotech. – volume: 117 start-page: 187401 year: 2016 ident: CR92 article-title: Control of exciton valley coherence in transition metal dichalcogenide monolayers publication-title: Phys. Rev. Lett. – volume: 118 start-page: 237404 year: 2017 ident: CR63 article-title: Giant paramagnetism-induced valley polarization of electrons in charge-tunable monolayer MoSe publication-title: Phys. Rev. Lett. – volume: 14 start-page: 290 year: 2015 end-page: 294 ident: CR90 article-title: Valley-selective optical Stark effect in monolayer WS publication-title: Nat. Mater. – volume: 118 start-page: 247701 year: 2017 ident: CR62 article-title: Density-dependent quantum Hall states and Zeeman splitting in monolayer and bilayer WSe publication-title: Phys. Rev. Lett. – volume: 11 start-page: 1032 year: 2015 end-page: 1036 ident: CR99 article-title: Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene publication-title: Nat. Phys. – volume: 12 start-page: 207 year: 2013 end-page: 211 ident: CR42 article-title: Tightly bound trions in monolayer MoS publication-title: Nat. Mater. – volume: 11 start-page: 477 year: 2015 end-page: 481 ident: CR45 article-title: Observation of biexcitons in monolayer WSe publication-title: Nat. Phys. – volume: 11 start-page: 431 year: 2017 end-page: 435 ident: CR103 article-title: Valley-polarized exciton–polaritons in a monolayer semiconductor publication-title: Nat. Photon. – volume: 17 start-page: 411 year: 2018 end-page: 415 ident: CR65 article-title: Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe publication-title: Nat. Mater. – volume: 105 start-page: 136805 year: 2010 ident: CR13 article-title: Atomically thin MoS : a new direct-gap semiconductor publication-title: Phys. Rev. Lett. – volume: 76 start-page: 323 year: 2004 end-page: 410 ident: CR36 article-title: Spintronics: fundamentals and applications publication-title: Rev. Mod. Phys. – volume: 90 start-page: 161302 year: 2014 ident: CR71 article-title: Exciton valley dynamics probed by Kerr rotation in WSe monolayers publication-title: Phys. Rev. B – volume: 16 start-page: 876 year: 2017 end-page: 877 ident: CR95 article-title: Valleytronics: magnetization without polarization publication-title: Nat. Mater. – volume: 344 start-page: 725 year: 2014 end-page: 728 ident: CR93 article-title: Electrically switchable chiral light-emitting transistor publication-title: Science – volume: 114 start-page: 256601 year: 2015 ident: CR20 article-title: Topological valley currents in gapped Dirac materials publication-title: Phys. Rev. Lett. – volume: 10 start-page: 216 year: 2016 end-page: 226 ident: CR11 article-title: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides publication-title: Nat. Photon. – volume: 10 start-page: 343 year: 2014 end-page: 350 ident: CR16 article-title: Spin and pseudospins in layered transition metal dichalcogenides publication-title: Nat. Phys. – volume: 113 start-page: 266804 year: 2014 ident: CR57 article-title: Valley splitting and polarization by the Zeeman effect in Monolayer MoSe publication-title: Phys. Rev. Lett. – volume: 8 start-page: 89 year: 2012 end-page: 94 ident: CR4 article-title: Field-induced polarization of Dirac valleys in bismuth publication-title: Nat. Phys. – volume: 16 start-page: 887 year: 2017 end-page: 891 ident: CR23 article-title: Valley magnetoelectricity in single-layer MoS publication-title: Nat. Mater. – volume: 106 start-page: 116803 year: 2011 ident: CR27 article-title: Spin and the honeycomb lattice: lessons from graphene publication-title: Phys. Rev. Lett. – volume: 10 start-page: 534 year: 2015 end-page: 540 ident: CR14 article-title: Multi-terminal transport measurements of MoS using a van der Waals heterostructure device platform publication-title: Nat. Nanotech. – volume: 95 start-page: 125420 year: 2017 ident: CR30 article-title: Optical selection rules for excitonic Rydberg series in the massive Dirac cones of hexagonal two-dimensional materials publication-title: Phys. Rev. B – volume: 96 start-page: 236801 year: 2006 ident: CR1 article-title: Valley polarization in Si(100) at zero magnetic field publication-title: Phys. Rev. Lett. – volume: 99 start-page: 236809 year: 2007 ident: CR5 article-title: Valley-contrasting physics in graphene: magnetic moment and topological transport publication-title: Phys. Rev. Lett. – volume: 346 start-page: 1205 year: 2014 end-page: 1208 ident: CR89 article-title: Ultrafast generation of pseudo-magnetic field for valley excitons in WSe monolayers publication-title: Science – volume: 9 start-page: 149 year: 2013 end-page: 153 ident: CR25 article-title: Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS publication-title: Nat. Phys. – volume: 12 start-page: 677 year: 2016 end-page: 682 ident: CR86 article-title: Direct measurement of exciton valley coherence in monolayer WSe publication-title: Nat. Phys. – volume: 13 start-page: 128 year: 2018 end-page: 132 ident: CR97 article-title: Electrical control of charged carriers and excitons in atomically thin materials publication-title: Nat. Nanotech. – ident: CR52 – volume: 114 start-page: 037401 year: 2015 ident: CR56 article-title: Breaking of valley degeneracy by magnetic field in monolayer MoSe publication-title: Phys. Rev. Lett. – volume: 351 start-page: 688 year: 2016 end-page: 691 ident: CR80 article-title: Valley-polarized exciton dynamics in a 2D semiconductor heterostructure publication-title: Science – volume: 2 start-page: 17033 year: 2017 ident: CR17 article-title: 2D transition metal dichalcogenides publication-title: Nat. Rev. Mater. – volume: 119 start-page: 137401 year: 2017 ident: CR84 article-title: Gate-controlled spin-valley locking of resident carriers in WSe monolayers publication-title: Phys. Rev. Lett. – volume: 77 start-page: 235406 year: 2008 ident: CR6 article-title: Valley-dependent optoelectronics from inversion symmetry breaking publication-title: Phys. Rev. B – volume: 2 start-page: 034002 year: 2015 ident: CR60 article-title: Magneto-optics in transition metal diselenide monolayers publication-title: 2D Mater. – volume: 120 start-page: 077401 year: 2018 ident: CR29 article-title: Optical selection rule of excitons in gapped chiral fermion systems publication-title: Phys. Rev. Lett. – volume: 3 start-page: e1700518 year: 2017 ident: CR83 article-title: Observation of ultralong valley lifetime in WSe /MoS heterostructures publication-title: Sci. Adv. – volume: 11 start-page: 141 year: 2015 end-page: 147 ident: CR59 article-title: Valley Zeeman effect in elementary optical excitations of monolayer WSe publication-title: Nat. Phys. – volume: 110 start-page: 066803 year: 2013 ident: CR69 article-title: Unconventional quantum Hall effect and tunable spin Hall effect in Dirac materials: application to an isolated MoS trilayer publication-title: Phys. Rev. Lett. – volume: 113 start-page: 026803 year: 2014 ident: CR38 article-title: Tightly bound excitons in monolayer WSe publication-title: Phys. Rev. Lett. – volume: 346 start-page: 448 year: 2014 end-page: 451 ident: CR98 article-title: Detecting topological currents in graphene superlattices publication-title: Science – volume: 94 start-page: 041301 year: 2016 ident: CR50 article-title: Optical absorption by Dirac excitons in single-layer transition-metal dichalcogenides publication-title: Phys. Rev. B – volume: 93 start-page: 041413 year: 2016 ident: CR105 article-title: Chiral plasmon in gapped Dirac systems publication-title: Phys. Rev. B – volume: 108 start-page: 196802 year: 2012 ident: CR7 article-title: Coupled spin and valley physics in monolayers of MoS and other group-VI dichalcogenides publication-title: Phys. Rev. Lett. – volume: 13 start-page: 1091 year: 2014 end-page: 1095 ident: CR41 article-title: Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor publication-title: Nat. Mater. – volume: 9 start-page: 647 year: 2015 end-page: 655 ident: CR47 article-title: Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor publication-title: ACS Nano – volume: 15 start-page: 1140 year: 2016 end-page: 1144 ident: CR9 article-title: Weyl semimetals, Fermi arcs and chiral anomalies publication-title: Nat. Mater. – volume: 90 start-page: 075413 year: 2014 ident: CR75 article-title: Valley dynamics probed through charged and neutral exciton emission in monolayer WSe publication-title: Phys. Rev. B – volume: 8 start-page: 634 year: 2013 end-page: 638 ident: CR44 article-title: Optical generation of excitonic valley coherence in monolayer WSe publication-title: Nat. Nanotech. – volume: 3 start-page: e1603113 year: 2017 ident: CR67 article-title: Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics publication-title: Sci. Adv. – volume: 120 start-page: 087402 year: 2018 ident: CR28 article-title: Unifying optical selection rules for excitons in two dimensions: band topology and winding numbers publication-title: Phys. Rev. Lett. – volume: 120 start-page: 057405 year: 2017 ident: CR49 article-title: Magnetooptics of exciton Rydberg states in a monolayer semiconductor publication-title: Phys. Rev. Lett. – volume: 11 start-page: 598 year: 2016 end-page: 602 ident: CR96 article-title: Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide publication-title: Nat. Nanotech. – volume: 7 start-page: 490 year: 2012 end-page: 493 ident: CR33 article-title: Valley polarization in MoS monolayers by optical pumping publication-title: Nat. Nanotech. – volume: 88 start-page: 115140 year: 2013 ident: CR68 article-title: Magnetic control of the valley degree of freedom of massive Dirac fermions with application to transition metal dichalcogenides publication-title: Phys. Rev. B – volume: 116 start-page: 086601 year: 2016 ident: CR15 article-title: Shubnikov-de Haas oscillations of high-mobility holes in monolayer and bilayer WSe : Landau level degeneracy, effective mass, and negative compressibility publication-title: Phys. Rev. Lett. – volume: 355 start-page: 1066 year: 2017 end-page: 1069 ident: CR91 article-title: Large, valley-exclusive Bloch-Siegert shift in monolayer WS publication-title: Science – volume: 11 start-page: 1027 year: 2015 end-page: 1031 ident: CR100 article-title: Gate-tunable topological valley transport in bilayer graphene publication-title: Nat. Phys. – volume: 14 start-page: 202 year: 2014 end-page: 206 ident: CR72 article-title: Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS publication-title: Nano Lett. – volume: 112 start-page: 047401 year: 2014 ident: CR76 article-title: Carrier and polarization dynamics in monolayer MoS publication-title: Phys. Rev. Lett. – volume: 86 start-page: 115409 year: 2012 ident: CR53 article-title: Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides publication-title: Phys. Rev. B – volume: 11 start-page: 830 year: 2015 end-page: 834 ident: CR81 article-title: Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS and WS publication-title: Nat. Phys. – volume: 12 start-page: 757 year: 2017 end-page: 762 ident: CR66 article-title: Enhanced valley splitting in monolayer WSe due to magnetic exchange field publication-title: Nat. Nanotech. – volume: 12 start-page: 883 year: 2017 end-page: 888 ident: CR87 article-title: Magnetic brightening and control of dark excitons in monolayer WSe publication-title: Nat. Nanotech. – volume: 93 start-page: 205423 year: 2016 ident: CR78 article-title: Exciton radiative lifetime in transition metal dichalcogenide monolayers publication-title: Phys. Rev. B – volume: 11 start-page: 421 year: 2016 end-page: 425 ident: CR22 article-title: Electrical control of the valley Hall effect in bilayer MoS transistors publication-title: Nat. Nanotech. – volume: 92 start-page: 085413 year: 2015 ident: CR55 article-title: Bright and dark singlet excitons via linear and two-photon spectroscopy in monolayer transition-metal dichalcogenides publication-title: Phys. Rev. B – volume: 120 start-page: 063902 year: 2017 ident: CR106 article-title: Observation of photonic topological valley Hall edge states publication-title: Phys. Rev. Lett. – volume: 86 start-page: 081301 year: 2012 ident: CR35 article-title: Robust optical emission polarization in MoS monolayers through selective valley excitation publication-title: Phys. Rev. B – volume: 113 start-page: 4658 year: 2016 end-page: 4663 ident: CR104 article-title: Chiral plasmons without magnetic field publication-title: Proc. Natl Acad. Sci. USA – volume: 14 start-page: 889 year: 2015 end-page: 893 ident: CR77 article-title: Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe publication-title: Nat. Mater. – volume: 18 start-page: 025012 year: 2016 ident: CR107 article-title: All-Si valley-Hall photonic topological insulator publication-title: New J. Phys. – volume: 4 year: 2013 ident: CR43 article-title: Electrical control of neutral and charged excitons in a monolayer semiconductor publication-title: Nat. Commun. – volume: 16 start-page: 5010 year: 2016 end-page: 5014 ident: CR82 article-title: Long-lived hole spin/valley polarization probed by Kerr rotation in monolayer WSe publication-title: Nano Lett. – volume: 18 start-page: 137 year: 2018 end-page: 143 ident: CR108 article-title: Electrical tuning of interlayer exciton gases in WSe bilayers publication-title: Nano Lett. – volume: 114 start-page: 097403 year: 2015 ident: CR40 article-title: Giant enhancement of the optical second-harmonic emission of WSe monolayers by laser excitation at exciton resonances publication-title: Phys. Rev. Lett. – volume: 115 start-page: 166803 year: 2015 ident: CR32 article-title: Berry phase modification to the energy spectrum of excitons publication-title: Phys. Rev. Lett. – volume: 12 start-page: 144 year: 2017 end-page: 149 ident: CR70 article-title: Valley- and spin-polarized Landau levels in monolayer WSe publication-title: Nat. Nanotech. – volume: 113 start-page: 076802 year: 2014 ident: CR37 article-title: Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS publication-title: Phys. Rev. Lett. – volume: 92 start-page: 235425 year: 2015 ident: CR73 article-title: Ultrafast valley relaxation dynamics in monolayer MoS probed by nonequilibrium optical techniques publication-title: Phys. Rev. B – volume: 546 start-page: 270 year: 2017 end-page: 273 ident: CR102 article-title: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit publication-title: Nature – volume: 10 start-page: 1271 year: 2010 end-page: 1275 ident: CR12 article-title: Emerging photoluminescence in monolayer MoS publication-title: Nano Lett. – volume: 17 start-page: 740 year: 2017 end-page: 746 ident: CR61 article-title: Probing the spin-polarized electronic band structure in monolayer transition metal dichalcogenides by optical spectroscopy publication-title: Nano Lett. – volume: 82 start-page: 1959 year: 2010 end-page: 2007 ident: CR19 article-title: Berry phase effects on electronic properties publication-title: Rev. Mod. Phys. – volume: 1 start-page: 16055 year: 2016 ident: CR18 article-title: Valleytronics in 2D materials publication-title: Nat. Rev. Mater. – volume: 117 start-page: 257402 year: 2016 ident: CR79 article-title: Long-lived valley polarization of intravalley trions in monolayer WSe publication-title: Phys. Rev. Lett. – volume: 13 start-page: 842 year: 2017 end-page: 847 ident: CR10 article-title: Direct optical detection of Weyl fermion chirality in a topological semimetal publication-title: Nat. Phys. – volume: 351 start-page: 688 year: 2016 ident: 204_CR80 publication-title: Science doi: 10.1126/science.aac7820 – volume: 113 start-page: 4658 year: 2016 ident: 204_CR104 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1519086113 – volume: 120 start-page: 063902 year: 2017 ident: 204_CR106 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.063902 – volume: 7 year: 2016 ident: 204_CR48 publication-title: Nat. Commun. doi: 10.1038/ncomms10643 – volume: 112 start-page: 047401 year: 2014 ident: 204_CR76 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.047401 – volume: 118 start-page: 237404 year: 2017 ident: 204_CR63 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.237404 – volume: 3 start-page: e1603113 year: 2017 ident: 204_CR67 publication-title: Sci. Adv. doi: 10.1126/sciadv.1603113 – volume: 119 start-page: 137401 year: 2017 ident: 204_CR84 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.137401 – volume: 120 start-page: 077401 year: 2018 ident: 204_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.077401 – volume: 513 start-page: 214 year: 2014 ident: 204_CR39 publication-title: Nature doi: 10.1038/nature13734 – volume: 344 start-page: 725 year: 2014 ident: 204_CR93 publication-title: Science doi: 10.1126/science.1251329 – volume: 1 start-page: 16055 year: 2016 ident: 204_CR18 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.55 – volume: 16 start-page: 5010 year: 2016 ident: 204_CR82 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01727 – volume: 106 start-page: 116803 year: 2011 ident: 204_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.116803 – ident: 204_CR52 doi: 10.1103/PhysRevLett.120.187401 – volume: 12 start-page: 856 year: 2017 ident: 204_CR88 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2017.106 – volume: 93 start-page: 041413 year: 2016 ident: 204_CR105 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.041413 – volume: 17 start-page: 740 year: 2017 ident: 204_CR61 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03855 – volume: 346 start-page: 448 year: 2014 ident: 204_CR98 publication-title: Science doi: 10.1126/science.1254966 – volume: 120 start-page: 066402 year: 2017 ident: 204_CR64 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.066402 – volume: 344 start-page: 1489 year: 2014 ident: 204_CR21 publication-title: Science doi: 10.1126/science.1250140 – volume: 110 start-page: 066803 year: 2013 ident: 204_CR69 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.066803 – volume: 9 start-page: 149 year: 2013 ident: 204_CR25 publication-title: Nat. Phys. doi: 10.1038/nphys2524 – volume: 12 start-page: 883 year: 2017 ident: 204_CR87 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2017.105 – volume: 118 start-page: 247701 year: 2017 ident: 204_CR62 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.247701 – volume: 120 start-page: 087402 year: 2018 ident: 204_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.087402 – volume: 17 start-page: 411 year: 2018 ident: 204_CR65 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0036-2 – volume: 99 start-page: 236809 year: 2007 ident: 204_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.236809 – volume: 120 start-page: 057405 year: 2017 ident: 204_CR49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.057405 – volume: 13 start-page: 1091 year: 2014 ident: 204_CR41 publication-title: Nat. Mater. doi: 10.1038/nmat4061 – volume: 4 year: 2013 ident: 204_CR43 publication-title: Nat. Commun. – volume: 95 start-page: 125420 year: 2017 ident: 204_CR30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.125420 – volume: 82 start-page: 1959 year: 2010 ident: 204_CR19 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.1959 – volume: 12 start-page: 757 year: 2017 ident: 204_CR66 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2017.68 – volume: 3 start-page: e1700518 year: 2017 ident: 204_CR83 publication-title: Sci. Adv. doi: 10.1126/sciadv.1700518 – volume: 9 start-page: 647 year: 2015 ident: 204_CR47 publication-title: ACS Nano doi: 10.1021/nn5059908 – volume: 11 start-page: 148 year: 2015 ident: 204_CR58 publication-title: Nat. Phys. doi: 10.1038/nphys3201 – volume: 18 start-page: 025012 year: 2016 ident: 204_CR107 publication-title: New J. Phys. doi: 10.1088/1367-2630/18/2/025012 – volume: 99 start-page: 102109 year: 2011 ident: 204_CR74 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3636402 – volume: 18 start-page: 137 year: 2018 ident: 204_CR108 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b03667 – volume: 77 start-page: 235406 year: 2008 ident: 204_CR6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.235406 – volume: 7 start-page: 494 year: 2012 ident: 204_CR34 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2012.96 – volume: 8 start-page: 634 year: 2013 ident: 204_CR44 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2013.151 – volume: 14 start-page: 202 year: 2014 ident: 204_CR72 publication-title: Nano Lett. doi: 10.1021/nl403742j – volume: 2 start-page: 034002 year: 2015 ident: 204_CR60 publication-title: 2D Mater. doi: 10.1088/2053-1583/2/3/034002 – volume: 115 start-page: 166803 year: 2015 ident: 204_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.166803 – volume: 15 start-page: 1140 year: 2016 ident: 204_CR9 publication-title: Nat. Mater. doi: 10.1038/nmat4787 – volume: 306 start-page: 1910 year: 2004 ident: 204_CR24 publication-title: Science doi: 10.1126/science.1105514 – volume: 116 start-page: 086601 year: 2016 ident: 204_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.086601 – volume: 86 start-page: 081301 year: 2012 ident: 204_CR35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.081301 – volume: 346 start-page: 1205 year: 2014 ident: 204_CR89 publication-title: Science doi: 10.1126/science.1258122 – volume: 114 start-page: 256601 year: 2015 ident: 204_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.256601 – volume: 13 start-page: 842 year: 2017 ident: 204_CR10 publication-title: Nat. Phys. doi: 10.1038/nphys4146 – volume: 16 start-page: 876 year: 2017 ident: 204_CR95 publication-title: Nat. Mater. doi: 10.1038/nmat4979 – volume: 10 start-page: 534 year: 2015 ident: 204_CR14 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2015.70 – volume: 92 start-page: 235425 year: 2015 ident: 204_CR73 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.235425 – volume: 115 start-page: 166802 year: 2015 ident: 204_CR31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.166802 – volume: 96 start-page: 236801 year: 2006 ident: 204_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.236801 – volume: 117 start-page: 187401 year: 2016 ident: 204_CR92 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.187401 – volume: 12 start-page: 207 year: 2013 ident: 204_CR42 publication-title: Nat. Mater. doi: 10.1038/nmat3505 – volume: 12 start-page: 144 year: 2017 ident: 204_CR70 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2016.213 – volume: 12 start-page: 760 year: 2013 ident: 204_CR2 publication-title: Nat. Mater. doi: 10.1038/nmat3694 – volume: 3 year: 2012 ident: 204_CR8 publication-title: Nat. Commun. – volume: 105 start-page: 136805 year: 2010 ident: 204_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 10 start-page: 343 year: 2014 ident: 204_CR16 publication-title: Nat. Phys. doi: 10.1038/nphys2942 – volume: 10 start-page: 216 year: 2016 ident: 204_CR11 publication-title: Nat. Photon. doi: 10.1038/nphoton.2015.282 – volume: 11 start-page: 598 year: 2016 ident: 204_CR96 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2016.49 – volume: 111 start-page: 216805 year: 2013 ident: 204_CR51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.216805 – volume: 12 start-page: 677 year: 2016 ident: 204_CR86 publication-title: Nat. Phys. doi: 10.1038/nphys3674 – volume: 92 start-page: 085413 year: 2015 ident: 204_CR55 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.085413 – volume: 94 start-page: 041301 year: 2016 ident: 204_CR50 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.041301 – volume: 11 start-page: 477 year: 2015 ident: 204_CR45 publication-title: Nat. Phys. doi: 10.1038/nphys3324 – volume: 8 start-page: 89 year: 2012 ident: 204_CR4 publication-title: Nat. Phys. doi: 10.1038/nphys2111 – volume: 88 start-page: 085433 year: 2013 ident: 204_CR26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.085433 – volume: 88 start-page: 115140 year: 2013 ident: 204_CR68 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.115140 – volume: 14 start-page: 889 year: 2015 ident: 204_CR77 publication-title: Nat. Mater. doi: 10.1038/nmat4356 – volume: 11 start-page: 431 year: 2017 ident: 204_CR103 publication-title: Nat. Photon. doi: 10.1038/nphoton.2017.86 – volume: 11 start-page: 421 year: 2016 ident: 204_CR22 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2015.337 – volume: 11 start-page: 141 year: 2015 ident: 204_CR59 publication-title: Nat. Phys. doi: 10.1038/nphys3203 – volume: 92 start-page: 125417 year: 2015 ident: 204_CR46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.125417 – volume: 118 start-page: 096602 year: 2017 ident: 204_CR94 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.096602 – volume: 2 start-page: 17033 year: 2017 ident: 204_CR17 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.33 – volume: 11 start-page: 1032 year: 2015 ident: 204_CR99 publication-title: Nat. Phys. doi: 10.1038/nphys3551 – volume: 16 start-page: 887 year: 2017 ident: 204_CR23 publication-title: Nat. Mater. doi: 10.1038/nmat4931 – volume: 114 start-page: 037401 year: 2015 ident: 204_CR56 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.037401 – volume: 90 start-page: 161302 year: 2014 ident: 204_CR71 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.161302 – volume: 76 start-page: 323 year: 2004 ident: 204_CR36 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.76.323 – volume: 7 start-page: 490 year: 2012 ident: 204_CR33 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2012.95 – volume: 86 start-page: 115409 year: 2012 ident: 204_CR53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.115409 – volume: 355 start-page: 1066 year: 2017 ident: 204_CR91 publication-title: Science doi: 10.1126/science.aal2241 – volume: 93 start-page: 205423 year: 2016 ident: 204_CR78 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.205423 – volume: 113 start-page: 076802 year: 2014 ident: 204_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.076802 – volume: 108 start-page: 196802 year: 2012 ident: 204_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.196802 – volume: 11 start-page: 830 year: 2015 ident: 204_CR81 publication-title: Nat. Phys. doi: 10.1038/nphys3419 – volume: 10 start-page: 1271 year: 2010 ident: 204_CR12 publication-title: Nano Lett. doi: 10.1021/nl903868w – volume: 117 start-page: 257402 year: 2016 ident: 204_CR79 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.257402 – volume: 113 start-page: 266804 year: 2014 ident: 204_CR57 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.266804 – volume: 14 start-page: 290 year: 2015 ident: 204_CR90 publication-title: Nat. Mater. doi: 10.1038/nmat4156 – volume: 13 start-page: 128 year: 2018 ident: 204_CR97 publication-title: Nat. Nanotech. doi: 10.1038/s41565-017-0030-x – volume: 546 start-page: 265 year: 2017 ident: 204_CR101 publication-title: Nature doi: 10.1038/nature22060 – volume: 13 start-page: 26 year: 2017 ident: 204_CR85 publication-title: Nat. Phys. doi: 10.1038/nphys3891 – volume: 546 start-page: 270 year: 2017 ident: 204_CR102 publication-title: Nature doi: 10.1038/nature22391 – volume: 11 start-page: 1027 year: 2015 ident: 204_CR100 publication-title: Nat. Phys. doi: 10.1038/nphys3485 – volume: 97 start-page: 186404 year: 2006 ident: 204_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.186404 – volume: 113 start-page: 026803 year: 2014 ident: 204_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.026803 – volume: 114 start-page: 097403 year: 2015 ident: 204_CR40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.097403 – volume: 90 start-page: 075413 year: 2014 ident: 204_CR75 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.075413 – volume: 91 start-page: 075310 year: 2015 ident: 204_CR54 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.075310 |
SSID | ssj0053922 |
Score | 2.6794274 |
SecondaryResourceType | review_article |
Snippet | The emergence of two-dimensional Dirac materials, particularly transition metal dichalcogenides (TMDs), has reinvigorated interest in valleytronics, which... Not provided. |
SourceID | osti proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 451 |
SubjectTerms | 639/301/357 639/766/1130 639/925/357 Applied and Technical Physics Degrees of freedom Information processing Information storage Optics Physics Physics and Astronomy Quantum Physics Review Article Topology |
Title | Light–valley interactions in 2D semiconductors |
URI | https://link.springer.com/article/10.1038/s41566-018-0204-6 https://www.proquest.com/docview/2077457238 https://www.osti.gov/biblio/1539841 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu3DhjRgbUw-cQBFdmj5yQrzGhAAhBBK3qGnSE1rHOpC48R_4h_wS7DZlAgmOVdNU-uLY_mLHBthLhQyMLzVDX0EwEceGSSEpy5xb7efS2KqW3vVNNHoQl4_hoztwK11aZaMTK0VtiozOyOkkJBYhtcg6mjwz6hpF0VXXQmMR2qiCEyRf7ZPzm9u7RheHaP15fSVSMhTVsIlrBslhWVEXpNIJowuiLPphmVoF7rAfXuevQGllf4arsOwcR--4Xuk1WLDjdVhxTqTntmi5Af4V0e3P949X6pLy5lE9iGl9e6HEB4-feSUlxBdjqvRaTMtNeBie35-OmGuLwDIkYzNmdGQGAnlMrFM94DbmXAdRmgqbhKnkJsxkpmMTB8gFaGTkGx5kQuLezdEZyIMtaI2Lsd0GjyOmNg9zjeihYbLSJDiBr9NwkCOT0R3wG0hU5mqGU-uKJ1XFroNE1SgqRFERiirqwP73J5O6YMZ_g7uEs0JrTyVrM8rtyWYKtbBMxKADvQZ-5XZWqeZy0IGDZknmr__81c7_k3VhiVeiQKl9PWjNpi92F92Nme7DYjK86DvJ-gJcj892 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6F9ACX0vJQQ1LqA70UrXB21489IIQKaShJTiBxW7ze9QnFNE5B3PgP_A9-FL-EGT-KQCq3HC2v19LsPL7ZeQHsJFIJ6yvDECtIJqPIMiUVZZlzZ_xMWVf20htPwuG5_H0RXLTgsamFobTKRieWitrmKd2R001IJAMakXVw_YfR1CiKrjYjNCq2OHV3t-iyFfsnR3i-3zkfHJ_9HLJ6qgBL0ZeZM2tC25foBkQmMX3uIs6NCJNEujhIFLdBqlIT2UgglKaVoW-5SKVC1s_QlmYC912CD1IIRRIVD341mj9ArMGrAkzFUDCCJooq4r2idJTQcY8ZlaOy8JUdbOcoz68w7puwbGntBp_gYw1TvcOKrz5Dy03XYLWGrF6tEIp18Efk3D_dP9zQTJY7j7pPzKpaiQIfPH7kFZR-n0-pr2w-KzbgfCHk2oT2NJ-6L-BxPEGXBZlBc4lm0Ckb4wa-SYJ-hn6T6YDfkESndYdyGpRxpctIuYh1RUWNVNRERR124Me_T66r9hzvLe4SnTViC2qQm1ImUTrXqPNVLPsd6DXk17UcF_qF6zqw2xzJy-v__mrr_c2-wfLwbDzSo5PJaRdWeMkWlFTYg_Z89td9RaAzN9sld3lwuWh2fgZsogkN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsQwDLVgkBAXdsSw9gAXUEQnTZccEAKGEesIIZC4haZJT2gK0wHEjX_gb_gcvgS7CwgkuHGs2qaqY8fvxY4NsBYL6RlXaoZYQTARhoZJISnLnFvtptLYopbeWTc4vBLH1_71ELzVZ2EorbJeE4uF2mQJ7ZHTTkgofGqRtZVWaRHn7c7O3T2jDlIUaa3baZQqcmKfn5C-5dtHbZzrdc47B5f7h6zqMMAS5DUDZnRgWgIpQahj3eI25Fx7QRwLG_mx5MZPZKJDE3oIq-nJwDXcS4REM0jRr6YejjsMIyGyIrcBI3sH3fOL2g_4iDx4eRxTMjQTv46p4h_kBW1CGh8xOpzKgm9esZGhdX9DvD-CtIXv60zCeAVand1Sy6ZgyPamYaICsE61POQz4J4S1X9_eX2kDi3PDtWi6JcnJ3K8cHjbySkZP-tRldmsn8_C1b8IbA4avaxn58HhOJ829VONzhOdopUmwgFcHfutFFmUboJbi0QlVb1yaptxq4q4uRepUooKpahIiipowsbnK3dlsY6_Hl4kOStEGlQuN6G8omSg0APISLSasFSLX1VWnasvHWzCZj0lX7d__dTC34Otwiiqsjo96p4swhgvtIIyDJegMeg_2GVEPQO9UqmXAzf_rdEfcr4Onw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light%E2%80%93valley+interactions+in+2D+semiconductors&rft.jtitle=Nature+photonics&rft.au=Mak%2C+Kin+Fai&rft.au=Xiao%2C+Di&rft.au=Shan%2C+Jie&rft.date=2018-08-01&rft.pub=Nature+Publishing+Group&rft.issn=1749-4885&rft.eissn=1749-4893&rft.volume=12&rft.issue=8&rft_id=info:doi/10.1038%2Fs41566-018-0204-6&rft.externalDocID=1539841 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-4885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-4885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-4885&client=summon |