Light–valley interactions in 2D semiconductors

The emergence of two-dimensional Dirac materials, particularly transition metal dichalcogenides (TMDs), has reinvigorated interest in valleytronics, which utilizes the electronic valley degree of freedom for information storage and processing. Here, we review the basic valley-dependent properties an...

Full description

Saved in:
Bibliographic Details
Published inNature photonics Vol. 12; no. 8; pp. 451 - 460
Main Authors Mak, Kin Fai, Xiao, Di, Shan, Jie
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.08.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The emergence of two-dimensional Dirac materials, particularly transition metal dichalcogenides (TMDs), has reinvigorated interest in valleytronics, which utilizes the electronic valley degree of freedom for information storage and processing. Here, we review the basic valley-dependent properties and their experimental demonstrations in single-layer semiconductor TMDs with an emphasis on the effects of band topology and light–valley interactions. We also provide a brief summary of the recent advances on controlling the valley degree of freedom in TMDs with light and other means for potential applications. Valleytronics in single-layer semiconductors is reviewed with an emphasis on controlling the valley degree of freedom with light as well as potential applications.
AbstractList The emergence of two-dimensional Dirac materials, particularly transition metal dichalcogenides (TMDs), has reinvigorated interest in valleytronics, which utilizes the electronic valley degree of freedom for information storage and processing. Here, we review the basic valley-dependent properties and their experimental demonstrations in single-layer semiconductor TMDs with an emphasis on the effects of band topology and light–valley interactions. We also provide a brief summary of the recent advances on controlling the valley degree of freedom in TMDs with light and other means for potential applications. Valleytronics in single-layer semiconductors is reviewed with an emphasis on controlling the valley degree of freedom with light as well as potential applications.
The emergence of two-dimensional Dirac materials, particularly transition metal dichalcogenides (TMDs), has reinvigorated interest in valleytronics, which utilizes the electronic valley degree of freedom for information storage and processing. Here, we review the basic valley-dependent properties and their experimental demonstrations in single-layer semiconductor TMDs with an emphasis on the effects of band topology and light–valley interactions. We also provide a brief summary of the recent advances on controlling the valley degree of freedom in TMDs with light and other means for potential applications.
Not provided.
Author Xiao, Di
Mak, Kin Fai
Shan, Jie
Author_xml – sequence: 1
  givenname: Kin Fai
  surname: Mak
  fullname: Mak, Kin Fai
  email: kinfai.mak@cornell.edu
  organization: Department of Physics and School of Applied and Engineering Physics, Cornell University, Kavli Institute at Cornell for Nanoscale Science
– sequence: 2
  givenname: Di
  surname: Xiao
  fullname: Xiao, Di
  email: dixiao@cmu.edu
  organization: Department of Physics, Carnegie Mellon University
– sequence: 3
  givenname: Jie
  surname: Shan
  fullname: Shan, Jie
  email: jie.shan@cornell.edu
  organization: Department of Physics and School of Applied and Engineering Physics, Cornell University, Kavli Institute at Cornell for Nanoscale Science
BackLink https://www.osti.gov/biblio/1539841$$D View this record in Osti.gov
BookMark eNp9kMtKAzEUhoNUsK0-gLui69HcJskspV6h4EbXIZPJtCnTpCap0J3v4Bv6JGYYURB0lRP4v3N-vgkYOe8MAKcIXiBIxGWkqGSsgEgUEENasAMwRpxWBRUVGX3PojwCkxjXEJakwngM4MIuV-nj7f1VdZ3Zz6xLJiidrHcxf2b4ehbNxmrvmp1OPsRjcNiqLpqTr3cKnm9vnub3xeLx7mF-tSg0hVUqmpo1iCJEea1qhA3HuCZMKWpEqSrclLrSNW84Ybzskww2mGhaCYJbjElLpuBs2OtjsjJqm4xe5RrO6CRRbi8oyqHzIbQN_mVnYpJrvwsu95IYck5LjonIKTSkdPAxBtPKbbAbFfYSQdnbk4M9me3J3p5kmeG_mNxA9VpSULb7l8QDGfMVtzThp9Pf0Cfg5YRu
CitedBy_id crossref_primary_10_1016_j_mssp_2022_106772
crossref_primary_10_1021_acs_jpclett_2c03169
crossref_primary_10_1063_5_0058538
crossref_primary_10_1038_s41467_022_30740_7
crossref_primary_10_3390_nano14010037
crossref_primary_10_1038_s41467_019_12128_2
crossref_primary_10_1103_PhysRevB_103_224426
crossref_primary_10_1364_OE_27_037131
crossref_primary_10_1038_s41565_023_01492_2
crossref_primary_10_1039_D3NR05562K
crossref_primary_10_1016_j_jmmm_2021_167870
crossref_primary_10_1021_jacs_1c06246
crossref_primary_10_1364_OE_490067
crossref_primary_10_1007_s40042_022_00401_5
crossref_primary_10_1103_PhysRevB_107_115428
crossref_primary_10_1038_s42254_019_0110_y
crossref_primary_10_1364_AOP_504035
crossref_primary_10_1103_PhysRevB_111_L081401
crossref_primary_10_1103_PhysRevB_104_165411
crossref_primary_10_1088_2516_1075_ac421f
crossref_primary_10_1557_s43578_022_00843_4
crossref_primary_10_1021_acs_nanolett_2c00824
crossref_primary_10_1038_s41377_020_00430_4
crossref_primary_10_1002_smll_202006425
crossref_primary_10_1002_adfm_202104192
crossref_primary_10_1021_acsami_3c18898
crossref_primary_10_1002_adfm_202407749
crossref_primary_10_1088_1674_4926_44_1_012001
crossref_primary_10_1063_PT_3_4567
crossref_primary_10_3938_jkps_76_221
crossref_primary_10_1103_PhysRevB_107_155431
crossref_primary_10_1021_acs_jpclett_2c01090
crossref_primary_10_3390_mi14051060
crossref_primary_10_1038_s41699_020_00183_z
crossref_primary_10_1038_s42005_019_0277_7
crossref_primary_10_1088_1361_648X_ad13d7
crossref_primary_10_1021_acs_nanolett_0c01173
crossref_primary_10_1073_pnas_2307611120
crossref_primary_10_1021_acs_nanolett_3c01698
crossref_primary_10_1103_PhysRevB_103_125121
crossref_primary_10_1063_5_0072266
crossref_primary_10_1103_PhysRevB_103_035308
crossref_primary_10_1007_s10825_020_01602_6
crossref_primary_10_3390_mi14020307
crossref_primary_10_1021_acsphotonics_2c00692
crossref_primary_10_1038_s41467_019_12129_1
crossref_primary_10_1103_PhysRevApplied_19_034056
crossref_primary_10_1063_5_0121316
crossref_primary_10_3390_nano14010056
crossref_primary_10_1103_PhysRevB_101_165103
crossref_primary_10_3390_met9020122
crossref_primary_10_1063_5_0139880
crossref_primary_10_1002_smtd_202101435
crossref_primary_10_1002_adma_201904132
crossref_primary_10_1021_acs_nanolett_3c01904
crossref_primary_10_1038_s41467_021_25747_5
crossref_primary_10_1016_j_physb_2024_416402
crossref_primary_10_1021_acsami_3c11564
crossref_primary_10_1103_PhysRevB_107_035416
crossref_primary_10_35848_1347_4065_ac825c
crossref_primary_10_1038_s41565_020_0764_8
crossref_primary_10_1021_acs_nanolett_2c03791
crossref_primary_10_1515_nanoph_2018_0185
crossref_primary_10_1039_D4NR03682D
crossref_primary_10_1007_s10854_021_07049_0
crossref_primary_10_1002_qute_201800111
crossref_primary_10_1103_PhysRevB_108_059904
crossref_primary_10_1002_smm2_1013
crossref_primary_10_1016_j_scib_2019_06_021
crossref_primary_10_1103_PhysRevB_102_125414
crossref_primary_10_1126_science_adg0014
crossref_primary_10_1038_s41586_023_05800_7
crossref_primary_10_1364_OL_44_004139
crossref_primary_10_1016_j_physrep_2022_09_005
crossref_primary_10_1038_s41566_019_0399_1
crossref_primary_10_1002_adma_202004111
crossref_primary_10_1021_acsnano_1c02381
crossref_primary_10_1007_s11431_022_2414_5
crossref_primary_10_1063_5_0062124
crossref_primary_10_1103_PhysRevLett_131_246301
crossref_primary_10_1103_PhysRevB_109_155416
crossref_primary_10_1002_lpor_202300185
crossref_primary_10_1038_s41467_021_24272_9
crossref_primary_10_1103_PhysRevB_105_064423
crossref_primary_10_1038_s41524_021_00531_7
crossref_primary_10_1103_PhysRevB_110_104108
crossref_primary_10_1088_1361_6528_ab60ca
crossref_primary_10_1088_1361_6463_ac8da0
crossref_primary_10_1103_PhysRevB_101_161409
crossref_primary_10_1364_OL_455569
crossref_primary_10_1021_acs_nanolett_3c05052
crossref_primary_10_1039_D3CP05127G
crossref_primary_10_1021_acs_jpclett_2c02794
crossref_primary_10_1088_1367_2630_abd205
crossref_primary_10_1063_5_0145789
crossref_primary_10_1016_j_mtphys_2022_100649
crossref_primary_10_1038_s41565_020_0644_2
crossref_primary_10_1103_PhysRevLett_126_056601
crossref_primary_10_1088_1361_6633_ac45f9
crossref_primary_10_1002_advs_202408640
crossref_primary_10_1038_s41586_020_2085_3
crossref_primary_10_1002_advs_202203588
crossref_primary_10_1209_0295_5075_ac2653
crossref_primary_10_1021_acs_chemrev_2c00800
crossref_primary_10_1021_acsphotonics_0c00174
crossref_primary_10_1103_PhysRevB_99_085421
crossref_primary_10_1103_PhysRevLett_124_217403
crossref_primary_10_1039_D4NR03769C
crossref_primary_10_1103_PhysRevB_108_L041404
crossref_primary_10_1103_PhysRevB_103_235402
crossref_primary_10_1038_s42254_022_00447_1
crossref_primary_10_1038_s41467_022_35396_x
crossref_primary_10_1088_1674_4926_44_1_011901
crossref_primary_10_1126_sciadv_adf3673
crossref_primary_10_1088_2053_1583_ab6ff7
crossref_primary_10_1021_acsnano_1c10607
crossref_primary_10_1103_PhysRevB_101_195407
crossref_primary_10_1038_s41598_022_18104_z
crossref_primary_10_1186_s40580_019_0213_2
crossref_primary_10_1021_acs_nanolett_1c02290
crossref_primary_10_1103_PhysRevB_109_195418
crossref_primary_10_1126_sciadv_abp8135
crossref_primary_10_1016_j_jssc_2022_123106
crossref_primary_10_1021_acsnano_9b01876
crossref_primary_10_1088_1361_648X_ad0d26
crossref_primary_10_1002_advs_202304792
crossref_primary_10_1038_s41563_023_01645_7
crossref_primary_10_1039_D4CP03519D
crossref_primary_10_34133_2020_5464258
crossref_primary_10_1038_s41467_020_14472_0
crossref_primary_10_1103_PhysRevB_109_165101
crossref_primary_10_1016_j_actamat_2023_118731
crossref_primary_10_1038_s41566_019_0428_0
crossref_primary_10_1103_PhysRevB_103_014309
crossref_primary_10_1002_adma_202003240
crossref_primary_10_1515_nanoph_2023_0175
crossref_primary_10_1038_s41586_024_07244_z
crossref_primary_10_1016_j_optmat_2021_111331
crossref_primary_10_1039_D1TC02837E
crossref_primary_10_1103_PhysRevB_110_115303
crossref_primary_10_1088_1361_6633_abdb98
crossref_primary_10_1103_PhysRevB_108_075109
crossref_primary_10_1515_nanoph_2020_0226
crossref_primary_10_1038_s41565_022_01309_8
crossref_primary_10_1103_PhysRevB_101_041405
crossref_primary_10_1016_j_photonics_2020_100783
crossref_primary_10_1039_D3NR04188C
crossref_primary_10_1038_s41565_022_01115_2
crossref_primary_10_1007_s40843_022_2138_x
crossref_primary_10_1007_s11467_023_1386_z
crossref_primary_10_1103_PhysRevLett_124_257403
crossref_primary_10_1021_acs_chemmater_1c04066
crossref_primary_10_1039_D0CP05951J
crossref_primary_10_1360_SSPMA_2022_0442
crossref_primary_10_1002_advs_202206191
crossref_primary_10_1002_pssa_202200156
crossref_primary_10_1021_acs_chemrev_1c00735
crossref_primary_10_1063_5_0240071
crossref_primary_10_1080_23746149_2020_1749883
crossref_primary_10_1002_adom_202102226
crossref_primary_10_1063_5_0242014
crossref_primary_10_1088_1361_6528_ac0dd8
crossref_primary_10_1103_PhysRevB_108_045146
crossref_primary_10_1103_PhysRevMaterials_6_114002
crossref_primary_10_1021_acs_jpclett_1c03742
crossref_primary_10_1103_PhysRevResearch_3_043198
crossref_primary_10_1088_1361_648X_ac6649
crossref_primary_10_1557_s43577_024_00837_z
crossref_primary_10_1002_aelm_202100196
crossref_primary_10_1021_jacs_0c05057
crossref_primary_10_1038_s41565_022_01165_6
crossref_primary_10_1038_s44310_024_00028_3
crossref_primary_10_1103_PhysRevLett_124_197401
crossref_primary_10_34133_2019_6494565
crossref_primary_10_1007_s12274_019_2497_2
crossref_primary_10_1126_science_adh1506
crossref_primary_10_1021_acs_jpcc_2c04332
crossref_primary_10_1063_5_0103383
crossref_primary_10_1364_PRJ_447029
crossref_primary_10_1103_PhysRevB_109_035408
crossref_primary_10_1039_D3NR05643K
crossref_primary_10_1038_s41377_020_0284_1
crossref_primary_10_1016_j_nanoen_2023_108550
crossref_primary_10_1038_s41467_024_48522_8
crossref_primary_10_1021_acs_jpcc_4c00516
crossref_primary_10_1039_D3NR00346A
crossref_primary_10_1088_2053_1583_abb5eb
crossref_primary_10_1002_lpor_201800327
crossref_primary_10_1016_j_sse_2019_03_002
crossref_primary_10_1021_acs_cgd_4c00477
crossref_primary_10_1103_PhysRevApplied_22_054064
crossref_primary_10_1088_1361_6463_abaa14
crossref_primary_10_1088_2399_6528_aca270
crossref_primary_10_1016_j_mtphys_2022_100839
crossref_primary_10_1038_s41467_022_33822_8
crossref_primary_10_1039_D1NR04868F
crossref_primary_10_1007_s11467_024_1425_4
crossref_primary_10_1021_acs_jpcc_0c05037
crossref_primary_10_1088_2053_1583_acb21c
crossref_primary_10_1088_2053_1583_ad7c5f
crossref_primary_10_1063_5_0221551
crossref_primary_10_1038_s41377_021_00500_1
crossref_primary_10_1021_acsnano_0c03624
crossref_primary_10_1038_s42005_022_01044_5
crossref_primary_10_1364_OL_421049
crossref_primary_10_1038_s41598_020_74376_3
crossref_primary_10_1103_PhysRevB_101_245412
crossref_primary_10_1088_1674_1056_ac11d2
crossref_primary_10_1103_PhysRevB_109_085406
crossref_primary_10_1002_nano_202000138
crossref_primary_10_1021_acsnano_2c02981
crossref_primary_10_1088_2053_1583_ab4171
crossref_primary_10_1039_D4CP00318G
crossref_primary_10_1103_PhysRevB_111_035446
crossref_primary_10_1063_5_0254488
crossref_primary_10_1021_acs_nanolett_9b04836
crossref_primary_10_1021_acs_jpcc_1c04724
crossref_primary_10_1103_PhysRevLett_123_036806
crossref_primary_10_1002_admi_202202208
crossref_primary_10_1038_s41377_020_00387_4
crossref_primary_10_1103_PhysRevLett_124_037701
crossref_primary_10_1063_5_0085850
crossref_primary_10_1103_PhysRevB_100_041406
crossref_primary_10_1021_acsomega_2c05426
crossref_primary_10_1039_D4NA00759J
crossref_primary_10_1021_acs_langmuir_2c03101
crossref_primary_10_1039_D2CP04397A
crossref_primary_10_1063_1_5143119
crossref_primary_10_1021_acs_nanolett_0c04152
crossref_primary_10_3390_nano14020133
crossref_primary_10_1038_s41586_023_06101_9
crossref_primary_10_1103_PhysRevB_111_125154
crossref_primary_10_3390_ma17133331
crossref_primary_10_1016_j_matdes_2021_110185
crossref_primary_10_1039_D4NR00011K
crossref_primary_10_1002_adom_202403137
crossref_primary_10_1039_D2CP05999A
crossref_primary_10_1002_andp_202000015
crossref_primary_10_1515_nanoph_2019_0564
crossref_primary_10_1002_lpor_202400545
crossref_primary_10_1021_acs_chemrev_3c00851
crossref_primary_10_1002_adfm_201904734
crossref_primary_10_1103_PhysRevB_109_165441
crossref_primary_10_1021_acs_jpclett_4c01433
crossref_primary_10_1557_s43579_024_00676_8
crossref_primary_10_1038_s41467_024_48725_z
crossref_primary_10_1038_s41377_024_01737_2
crossref_primary_10_1103_PhysRevLett_127_149701
crossref_primary_10_3390_nano14151295
crossref_primary_10_1103_PhysRevB_109_224506
crossref_primary_10_1016_j_physe_2022_115520
crossref_primary_10_1364_PRJ_542666
crossref_primary_10_1021_acs_nanolett_2c03947
crossref_primary_10_1103_PhysRevMaterials_5_044001
crossref_primary_10_1515_nanoph_2021_0800
crossref_primary_10_7498_aps_71_20220054
crossref_primary_10_1002_asia_202200265
crossref_primary_10_3390_molecules27092807
crossref_primary_10_1039_D0NR08000D
crossref_primary_10_1007_s11433_019_1436_4
crossref_primary_10_1364_OL_44_002141
crossref_primary_10_1103_PhysRevB_108_195429
crossref_primary_10_1103_PhysRevB_103_075122
crossref_primary_10_1021_acsaelm_3c01328
crossref_primary_10_1038_s41467_020_17517_6
crossref_primary_10_1088_2752_5724_ad8cf2
crossref_primary_10_1007_s11467_023_1295_1
crossref_primary_10_1007_s12274_020_2652_9
crossref_primary_10_1364_OE_422584
crossref_primary_10_1016_j_nanoen_2020_104678
crossref_primary_10_1103_PhysRevB_105_195421
crossref_primary_10_1021_acsnano_8b09659
crossref_primary_10_1039_D1CP00250C
crossref_primary_10_3390_photonics11040358
crossref_primary_10_1515_nanoph_2018_0041
crossref_primary_10_1002_inf2_12096
crossref_primary_10_2139_ssrn_4013422
crossref_primary_10_1088_1361_6528_ac50f2
crossref_primary_10_1021_acs_nanolett_8b03967
crossref_primary_10_1103_PhysRevB_99_125405
crossref_primary_10_1364_OPTICA_458991
crossref_primary_10_1063_5_0051394
crossref_primary_10_1364_AOP_454797
crossref_primary_10_1002_adom_202301948
crossref_primary_10_1038_s42254_020_00276_0
crossref_primary_10_1021_acsami_3c03002
crossref_primary_10_3390_ma16103701
crossref_primary_10_1364_JOSAB_421279
crossref_primary_10_1103_PhysRevB_103_L140404
crossref_primary_10_1038_s41578_022_00440_1
crossref_primary_10_1038_s41598_020_73138_5
crossref_primary_10_1002_adfm_202204779
crossref_primary_10_1002_apxr_202300062
crossref_primary_10_1088_1367_2630_acb22e
crossref_primary_10_1103_PhysRevB_100_161404
crossref_primary_10_1063_5_0242426
crossref_primary_10_1088_1674_4926_44_1_010301
crossref_primary_10_1016_j_trechm_2019_07_007
crossref_primary_10_1039_D3TC04255C
crossref_primary_10_1016_j_mattod_2024_03_014
crossref_primary_10_1021_acs_jpclett_9b00217
crossref_primary_10_1007_s12274_020_2809_6
crossref_primary_10_1103_PhysRevLett_122_123903
crossref_primary_10_1515_nanoph_2023_0368
crossref_primary_10_1002_smll_201904271
crossref_primary_10_1002_adma_202200656
crossref_primary_10_1038_s41524_021_00632_3
crossref_primary_10_1021_acsnano_4c11080
crossref_primary_10_1103_PhysRevB_111_085402
crossref_primary_10_1103_PhysRevLett_128_176601
crossref_primary_10_1002_qute_202100162
crossref_primary_10_1038_s41467_020_20545_x
crossref_primary_10_1103_PhysRevLett_134_046403
crossref_primary_10_1007_s12274_020_3036_x
crossref_primary_10_1021_acs_nanolett_2c04604
crossref_primary_10_1002_adfm_202010234
crossref_primary_10_1364_OL_487201
crossref_primary_10_1021_acsnano_0c00218
crossref_primary_10_1088_1361_648X_aca24f
crossref_primary_10_1002_adom_202101772
crossref_primary_10_1063_1_5115093
crossref_primary_10_1021_acsami_1c06622
crossref_primary_10_1016_j_cpc_2023_109001
crossref_primary_10_1002_pssr_202000008
crossref_primary_10_1364_OE_540784
crossref_primary_10_1002_adfm_202213933
crossref_primary_10_1002_adma_202204908
crossref_primary_10_1021_acsnano_0c05343
crossref_primary_10_1039_D0TC01322F
crossref_primary_10_1007_s40843_021_1832_2
crossref_primary_10_1021_acsaelm_1c00366
crossref_primary_10_1021_acs_jpclett_2c01034
crossref_primary_10_1038_s41467_024_53425_9
crossref_primary_10_1038_s41563_019_0294_7
crossref_primary_10_1103_PhysRevB_108_155431
crossref_primary_10_1088_1361_6463_acbcde
crossref_primary_10_1088_1361_6528_abd507
crossref_primary_10_1021_acs_nanolett_2c01442
crossref_primary_10_1002_pssr_202100571
crossref_primary_10_1103_PhysRevB_101_125423
crossref_primary_10_1103_PhysRevLett_123_097403
crossref_primary_10_1103_PhysRevB_105_085302
crossref_primary_10_1103_PhysRevX_14_011004
crossref_primary_10_1126_sciadv_abn3837
crossref_primary_10_1088_1674_1056_ad6077
crossref_primary_10_1007_s11467_023_1355_6
crossref_primary_10_3390_photonics10101126
crossref_primary_10_1103_PhysRevB_105_L121403
crossref_primary_10_7498_aps_72_20222080
Cites_doi 10.1126/science.aac7820
10.1073/pnas.1519086113
10.1103/PhysRevLett.120.063902
10.1038/ncomms10643
10.1103/PhysRevLett.112.047401
10.1103/PhysRevLett.118.237404
10.1126/sciadv.1603113
10.1103/PhysRevLett.119.137401
10.1103/PhysRevLett.120.077401
10.1038/nature13734
10.1126/science.1251329
10.1038/natrevmats.2016.55
10.1021/acs.nanolett.6b01727
10.1103/PhysRevLett.106.116803
10.1103/PhysRevLett.120.187401
10.1038/nnano.2017.106
10.1103/PhysRevB.93.041413
10.1021/acs.nanolett.6b03855
10.1126/science.1254966
10.1103/PhysRevLett.120.066402
10.1126/science.1250140
10.1103/PhysRevLett.110.066803
10.1038/nphys2524
10.1038/nnano.2017.105
10.1103/PhysRevLett.118.247701
10.1103/PhysRevLett.120.087402
10.1038/s41563-018-0036-2
10.1103/PhysRevLett.99.236809
10.1103/PhysRevLett.120.057405
10.1038/nmat4061
10.1103/PhysRevB.95.125420
10.1103/RevModPhys.82.1959
10.1038/nnano.2017.68
10.1126/sciadv.1700518
10.1021/nn5059908
10.1038/nphys3201
10.1088/1367-2630/18/2/025012
10.1063/1.3636402
10.1021/acs.nanolett.7b03667
10.1103/PhysRevB.77.235406
10.1038/nnano.2012.96
10.1038/nnano.2013.151
10.1021/nl403742j
10.1088/2053-1583/2/3/034002
10.1103/PhysRevLett.115.166803
10.1038/nmat4787
10.1126/science.1105514
10.1103/PhysRevLett.116.086601
10.1103/PhysRevB.86.081301
10.1126/science.1258122
10.1103/PhysRevLett.114.256601
10.1038/nphys4146
10.1038/nmat4979
10.1038/nnano.2015.70
10.1103/PhysRevB.92.235425
10.1103/PhysRevLett.115.166802
10.1103/PhysRevLett.96.236801
10.1103/PhysRevLett.117.187401
10.1038/nmat3505
10.1038/nnano.2016.213
10.1038/nmat3694
10.1103/PhysRevLett.105.136805
10.1038/nphys2942
10.1038/nphoton.2015.282
10.1038/nnano.2016.49
10.1103/PhysRevLett.111.216805
10.1038/nphys3674
10.1103/PhysRevB.92.085413
10.1103/PhysRevB.94.041301
10.1038/nphys3324
10.1038/nphys2111
10.1103/PhysRevB.88.085433
10.1103/PhysRevB.88.115140
10.1038/nmat4356
10.1038/nphoton.2017.86
10.1038/nnano.2015.337
10.1038/nphys3203
10.1103/PhysRevB.92.125417
10.1103/PhysRevLett.118.096602
10.1038/natrevmats.2017.33
10.1038/nphys3551
10.1038/nmat4931
10.1103/PhysRevLett.114.037401
10.1103/PhysRevB.90.161302
10.1103/RevModPhys.76.323
10.1038/nnano.2012.95
10.1103/PhysRevB.86.115409
10.1126/science.aal2241
10.1103/PhysRevB.93.205423
10.1103/PhysRevLett.113.076802
10.1103/PhysRevLett.108.196802
10.1038/nphys3419
10.1021/nl903868w
10.1103/PhysRevLett.117.257402
10.1103/PhysRevLett.113.266804
10.1038/nmat4156
10.1038/s41565-017-0030-x
10.1038/nature22060
10.1038/nphys3891
10.1038/nature22391
10.1038/nphys3485
10.1103/PhysRevLett.97.186404
10.1103/PhysRevLett.113.026803
10.1103/PhysRevLett.114.097403
10.1103/PhysRevB.90.075413
10.1103/PhysRevB.91.075310
ContentType Journal Article
Copyright Springer Nature Limited 2018
Copyright Nature Publishing Group Aug 2018
Copyright_xml – notice: Springer Nature Limited 2018
– notice: Copyright Nature Publishing Group Aug 2018
CorporateAuthor Univ. of Washington, Seattle, WA (United States)
Pennsylvania State Univ., University Park, PA (United States)
CorporateAuthor_xml – name: Pennsylvania State Univ., University Park, PA (United States)
– name: Univ. of Washington, Seattle, WA (United States)
DBID AAYXX
CITATION
7QO
7SP
7U5
8FD
8FE
8FG
8FH
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
H8D
HCIFZ
L7M
LK8
M7P
P5Z
P62
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
OTOTI
DOI 10.1038/s41566-018-0204-6
DatabaseName CrossRef
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
Aerospace Database
SciTech Collection (ProQuest)
Advanced Technologies Database with Aerospace
Biological Sciences
Biological Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
OSTI.GOV
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1749-4893
EndPage 460
ExternalDocumentID 1539841
10_1038_s41566_018_0204_6
GroupedDBID -~X
0R~
123
29M
39C
4.4
5M7
5S5
70F
8FE
8FG
8FH
8R4
8R5
AARCD
AAYZH
ABAWZ
ABDBF
ABFSG
ABJNI
ABLJU
ABZEH
ACBWK
ACGFS
ACIWK
ACPRK
ACSTC
ACUHS
ADBBV
AENEX
AEUYN
AEZWR
AFANA
AFBBN
AFHIU
AFKRA
AFRAH
AFSHS
AFWHJ
AGAYW
AHBCP
AHOSX
AHSBF
AHWEU
AIBTJ
AIXLP
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ALPWD
ARAPS
ARMCB
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
CCPQU
CS3
DU5
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
HCIFZ
HVGLF
HZ~
I-F
LK8
M7P
NFIDA
NNMJJ
O9-
ODYON
P2P
P62
PHGZM
PHGZT
PQGLB
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
CITATION
7QO
7SP
7U5
8FD
AZQEC
DWQXO
FR3
GNUQQ
H8D
L7M
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
5BI
AADEA
AADWK
AAEEF
AAEXX
AAJMP
AAPBV
AAYJO
AAZLF
ABEEJ
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AGHTU
AHGBK
AJDOV
NYICJ
OTOTI
ID FETCH-LOGICAL-c409t-db6d141147bab12e722b36aa4e85a92d5c9cb7d736756d1460d23c49832f223f3
IEDL.DBID BENPR
ISSN 1749-4885
IngestDate Fri May 19 02:14:05 EDT 2023
Wed Jul 16 16:17:40 EDT 2025
Tue Jul 01 03:06:57 EDT 2025
Thu Apr 24 23:02:30 EDT 2025
Mon Jul 21 06:06:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-db6d141147bab12e722b36aa4e85a92d5c9cb7d736756d1460d23c49832f223f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Literature Review-2
USDOE Office of Science (SC)
SC0012509; SC0013883
PQID 2077457238
PQPubID 546300
PageCount 10
ParticipantIDs osti_scitechconnect_1539841
proquest_journals_2077457238
crossref_primary_10_1038_s41566_018_0204_6
crossref_citationtrail_10_1038_s41566_018_0204_6
springer_journals_10_1038_s41566_018_0204_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Nature photonics
PublicationTitleAbbrev Nature Photon
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Lee, Wang, Xie, Mak, Shan (CR23) 2017; 16
Srivastava (CR59) 2015; 11
Kumar (CR105) 2016; 93
Takashina, Ono, Fujiwara, Takahashi, Hirayama (CR1) 2006; 96
Tzuhsuan, Gennady (CR107) 2016; 18
An (CR94) 2017; 118
Kim (CR83) 2017; 3
Aivazian (CR58) 2015; 11
Gunawan (CR3) 2006; 97
Yao, Xiao, Niu (CR6) 2008; 77
Lee, Mak, Shan (CR22) 2016; 11
Kato, Myers, Gossard, Awschalom (CR24) 2004; 306
Sie, Frenzel, Lee, Kong, Gedik (CR46) 2015; 92
Berkelbach, Hybertsen, Reichman (CR55) 2015; 92
Gustafsson (CR65) 2018; 17
Kim (CR89) 2014; 346
Wu (CR25) 2013; 9
Gorbachev (CR98) 2014; 346
Mecklenburg, Regan (CR27) 2011; 106
Li, Zhang, Niu (CR69) 2013; 110
Ye (CR39) 2014; 513
Jones (CR44) 2013; 8
Zeng, Dai, Yao, Xiao, Cui (CR33) 2012; 7
Sie (CR91) 2017; 355
Poellmann (CR77) 2015; 14
Hao (CR86) 2016; 12
Wang, Chiu, Honz, Mak, Shan (CR108) 2018; 18
Sie (CR90) 2015; 14
Qiu, da Jornada, Louie (CR51) 2013; 111
Mak, He, Shan, Heinz (CR34) 2012; 7
Back (CR63) 2017; 118
Zhong (CR67) 2017; 3
MacNeill (CR56) 2015; 114
Wang (CR97) 2018; 13
Wang (CR60) 2015; 2
Xiao, Liu, Feng, Xu, Yao (CR7) 2012; 108
Žutić, Fabian, Das Sarma (CR36) 2004; 76
CR52
Zhao (CR66) 2017; 12
Singh (CR79) 2016; 117
Srivastava, Imamoğlu (CR31) 2015; 115
Trushin, Goerbig, Belzig (CR50) 2016; 94
Wang, Zhao, Mak, Shan (CR61) 2017; 17
Chen, Cain, Stanev, Dravid, Stern (CR103) 2017; 11
Jia, Xu, Hasan (CR9) 2016; 15
Zhang, Oka, Suzuki, Ye, Iwasa (CR93) 2014; 344
Mak, Lee, Hone, Shan, Heinz (CR13) 2010; 105
Movva (CR62) 2017; 118
Lensky, Song, Samutpraphoot, Levitov (CR20) 2015; 114
Xiao, Yao, Niu (CR5) 2007; 99
You (CR45) 2015; 11
Gong, Yu, Wang, Yao (CR30) 2017; 95
Korn, Heydrich, Hirmer, Schmutzler, Schüller (CR74) 2011; 99
Ugeda (CR41) 2014; 13
Cao (CR8) 2012; 3
Zhou (CR88) 2017; 12
Cai (CR68) 2013; 88
Shang (CR47) 2015; 9
He (CR38) 2014; 113
Splendiani (CR12) 2010; 10
Mai (CR72) 2014; 14
Sui (CR100) 2015; 11
Wang, Mak, Shan (CR64) 2017; 120
Yu, Yao (CR95) 2017; 16
Mak (CR42) 2013; 12
Cui (CR14) 2015; 10
Mak, McGill, Park, McEuen (CR21) 2014; 344
Dey (CR84) 2017; 119
Xu, Yao, Xiao, Heinz (CR16) 2014; 10
Rivera (CR80) 2016; 351
Song, Rudner (CR104) 2016; 113
Huang (CR102) 2017; 546
Wang (CR92) 2016; 117
Song, Xie, Kang, Park, Sih (CR82) 2016; 16
Gong (CR101) 2017; 546
Zhu (CR71) 2014; 90
Noh, Huang, Chen, Rechtsman (CR106) 2017; 120
Cao, Wu, Louie (CR28) 2018; 120
Wang (CR75) 2014; 90
Ye (CR96) 2016; 11
Wang, Shan, Mak (CR70) 2017; 12
Lagarde (CR76) 2014; 112
Schaibley (CR18) 2016; 1
Yang (CR81) 2015; 11
Manzeli, Ovchinnikov, Pasquier, Yazyev, Kis (CR17) 2017; 2
Dal Conte (CR73) 2015; 92
Stier, McCreary, Jonker, Kono, Crooker (CR48) 2016; 7
Sallen (CR35) 2012; 86
Fallahazad (CR15) 2016; 116
Wang (CR40) 2015; 114
Liu, Shan, Yao, Yao, Xiao (CR26) 2013; 88
Shimazaki (CR99) 2015; 11
Stier (CR49) 2017; 120
Ramasubramaniam (CR53) 2012; 86
Mak, Shan (CR11) 2016; 10
Xiao, Chang, Niu (CR19) 2010; 82
Wu, Qu, MacDonald (CR54) 2015; 91
Ye, Sun, Heinz (CR85) 2017; 13
Zhu, Collaudin, Fauque, Kang, Behnia (CR4) 2012; 8
Ross (CR43) 2013; 4
Isberg (CR2) 2013; 12
Zhang, Shan, Xiao (CR29) 2018; 120
Ma (CR10) 2017; 13
Zhou, Shan, Yao, Xiao (CR32) 2015; 115
Li (CR57) 2014; 113
Robert (CR78) 2016; 93
Zhang (CR87) 2017; 12
Chernikov (CR37) 2014; 113
A Splendiani (204_CR12) 2010; 10
EJ Sie (204_CR90) 2015; 14
J Noh (204_CR106) 2017; 120
204_CR52
D Xiao (204_CR5) 2007; 99
T Cai (204_CR68) 2013; 88
Y Li (204_CR57) 2014; 113
T Cao (204_CR28) 2018; 120
G Wang (204_CR60) 2015; 2
A Ramasubramaniam (204_CR53) 2012; 86
J Zhou (204_CR32) 2015; 115
I Žutić (204_CR36) 2004; 76
Z Wang (204_CR61) 2017; 17
A Srivastava (204_CR31) 2015; 115
JR Schaibley (204_CR18) 2016; 1
A Srivastava (204_CR59) 2015; 11
Y Ye (204_CR96) 2016; 11
S Manzeli (204_CR17) 2017; 2
YJ Chen (204_CR103) 2017; 11
M Sui (204_CR100) 2015; 11
AV Stier (204_CR48) 2016; 7
CR Zhu (204_CR71) 2014; 90
KF Mak (204_CR42) 2013; 12
F Wu (204_CR54) 2015; 91
Z Zhu (204_CR4) 2012; 8
G Aivazian (204_CR58) 2015; 11
T Korn (204_CR74) 2011; 99
A Chernikov (204_CR37) 2014; 113
D Lagarde (204_CR76) 2014; 112
Z Wang (204_CR70) 2017; 12
P Back (204_CR63) 2017; 118
KF Mak (204_CR13) 2010; 105
P Gong (204_CR30) 2017; 95
J Lee (204_CR22) 2016; 11
G Sallen (204_CR35) 2012; 86
G Wang (204_CR40) 2015; 114
X Zhang (204_CR29) 2018; 120
B Huang (204_CR102) 2017; 546
Y You (204_CR45) 2015; 11
M Tzuhsuan (204_CR107) 2016; 18
J Lee (204_CR23) 2017; 16
D MacNeill (204_CR56) 2015; 114
EJ Sie (204_CR91) 2017; 355
A Kumar (204_CR105) 2016; 93
S Jia (204_CR9) 2016; 15
XX Zhang (204_CR87) 2017; 12
S Dal Conte (204_CR73) 2015; 92
B Fallahazad (204_CR15) 2016; 116
MV Gustafsson (204_CR65) 2018; 17
C Zhao (204_CR66) 2017; 12
D Zhong (204_CR67) 2017; 3
C Robert (204_CR78) 2016; 93
P Dey (204_CR84) 2017; 119
K Takashina (204_CR1) 2006; 96
Z Ye (204_CR85) 2017; 13
M Mecklenburg (204_CR27) 2011; 106
Z Ye (204_CR39) 2014; 513
YJ Zhang (204_CR93) 2014; 344
S Wu (204_CR25) 2013; 9
C Gong (204_CR101) 2017; 546
C Mai (204_CR72) 2014; 14
JS Ross (204_CR43) 2013; 4
T Cao (204_CR8) 2012; 3
GB Liu (204_CR26) 2013; 88
C Poellmann (204_CR77) 2015; 14
AV Stier (204_CR49) 2017; 120
X Li (204_CR69) 2013; 110
M Trushin (204_CR50) 2016; 94
X Song (204_CR82) 2016; 16
K Hao (204_CR86) 2016; 12
O Gunawan (204_CR3) 2006; 97
K He (204_CR38) 2014; 113
G Wang (204_CR75) 2014; 90
KF Mak (204_CR11) 2016; 10
X Cui (204_CR14) 2015; 10
H Yu (204_CR95) 2017; 16
Z Wang (204_CR108) 2018; 18
MM Ugeda (204_CR41) 2014; 13
Y Shimazaki (204_CR99) 2015; 11
X Xu (204_CR16) 2014; 10
RV Gorbachev (204_CR98) 2014; 346
D Xiao (204_CR19) 2010; 82
H Zeng (204_CR33) 2012; 7
Q Ma (204_CR10) 2017; 13
KF Mak (204_CR21) 2014; 344
KF Mak (204_CR34) 2012; 7
JCW Song (204_CR104) 2016; 113
YD Lensky (204_CR20) 2015; 114
DY Qiu (204_CR51) 2013; 111
L Yang (204_CR81) 2015; 11
W Yao (204_CR6) 2008; 77
A Singh (204_CR79) 2016; 117
Z Wang (204_CR64) 2017; 120
TC Berkelbach (204_CR55) 2015; 92
AM Jones (204_CR44) 2013; 8
Y Zhou (204_CR88) 2017; 12
HCP Movva (204_CR62) 2017; 118
EJ Sie (204_CR46) 2015; 92
J Shang (204_CR47) 2015; 9
D Xiao (204_CR7) 2012; 108
J Kim (204_CR83) 2017; 3
YK Kato (204_CR24) 2004; 306
J Kim (204_CR89) 2014; 346
P Rivera (204_CR80) 2016; 351
G Wang (204_CR92) 2016; 117
J Isberg (204_CR2) 2013; 12
K Wang (204_CR97) 2018; 13
XT An (204_CR94) 2017; 118
References_xml – volume: 92
  start-page: 125417
  year: 2015
  ident: CR46
  article-title: Intervalley biexcitons and many-body effects in monolayer MoS
  publication-title: Phys. Rev. B
– volume: 11
  start-page: 148
  year: 2015
  end-page: 152
  ident: CR58
  article-title: Magnetic control of valley pseudospin in monolayer WSe
  publication-title: Nat. Phys.
– volume: 97
  start-page: 186404
  year: 2006
  ident: CR3
  article-title: Valley susceptibility of an interacting two-dimensional electron system
  publication-title: Phys. Rev. Lett.
– volume: 3
  year: 2012
  ident: CR8
  article-title: Valley-selective circular dichroism of monolayer molybdenum disulphide
  publication-title: Nat. Commun.
– volume: 118
  start-page: 096602
  year: 2017
  ident: CR94
  article-title: Realization of valley and spin pumps by scattering at nonmagnetic disorders
  publication-title: Phys. Rev. Lett.
– volume: 88
  start-page: 085433
  year: 2013
  ident: CR26
  article-title: Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides
  publication-title: Phys. Rev. B
– volume: 306
  start-page: 1910
  year: 2004
  end-page: 1913
  ident: CR24
  article-title: Observation of the spin Hall effect in semiconductors
  publication-title: Science
– volume: 91
  start-page: 075310
  year: 2015
  ident: CR54
  article-title: Exciton band structure of monolayer MoS
  publication-title: Phys. Rev. B
– volume: 12
  start-page: 760
  year: 2013
  end-page: 764
  ident: CR2
  article-title: Generation, transport and detection of valley-polarized electrons in diamond
  publication-title: Nat. Mater.
– volume: 115
  start-page: 166802
  year: 2015
  ident: CR31
  article-title: Signatures of Bloch-band geometry on excitons: nonhydrogenic spectra in transition-metal dichalcogenides
  publication-title: Phys. Rev. Lett.
– volume: 513
  start-page: 214
  year: 2014
  end-page: 218
  ident: CR39
  article-title: Probing excitonic dark states in single-layer tungsten disulphide
  publication-title: Nature
– volume: 120
  start-page: 066402
  year: 2017
  ident: CR64
  article-title: Strongly interaction-enhanced valley magnetic response in monolayer WSe
  publication-title: Phys. Rev. Lett.
– volume: 99
  start-page: 102109
  year: 2011
  ident: CR74
  article-title: Low-temperature photocarrier dynamics in monolayer MoS
  publication-title: Appl. Phys. Lett.
– volume: 13
  start-page: 26
  year: 2017
  end-page: 29
  ident: CR85
  article-title: Optical manipulation of valley pseudospin
  publication-title: Nat. Phys.
– volume: 7
  start-page: 494
  year: 2012
  end-page: 498
  ident: CR34
  article-title: Control of valley polarization in monolayer MoS by optical helicity
  publication-title: Nat. Nanotech.
– volume: 111
  start-page: 216805
  year: 2013
  ident: CR51
  article-title: Optical spectrum of MoS : many-body effects and diversity of exciton states
  publication-title: Phys. Rev. Lett.
– volume: 7
  year: 2016
  ident: CR48
  article-title: Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS and MoS to 65 Tesla
  publication-title: Nat. Commun.
– volume: 344
  start-page: 1489
  year: 2014
  end-page: 1492
  ident: CR21
  article-title: The valley Hall effect in MoS transistors
  publication-title: Science
– volume: 546
  start-page: 265
  year: 2017
  end-page: 269
  ident: CR101
  article-title: Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals
  publication-title: Nature
– volume: 12
  start-page: 856
  year: 2017
  end-page: 860
  ident: CR88
  article-title: Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons
  publication-title: Nat. Nanotech.
– volume: 117
  start-page: 187401
  year: 2016
  ident: CR92
  article-title: Control of exciton valley coherence in transition metal dichalcogenide monolayers
  publication-title: Phys. Rev. Lett.
– volume: 118
  start-page: 237404
  year: 2017
  ident: CR63
  article-title: Giant paramagnetism-induced valley polarization of electrons in charge-tunable monolayer MoSe
  publication-title: Phys. Rev. Lett.
– volume: 14
  start-page: 290
  year: 2015
  end-page: 294
  ident: CR90
  article-title: Valley-selective optical Stark effect in monolayer WS
  publication-title: Nat. Mater.
– volume: 118
  start-page: 247701
  year: 2017
  ident: CR62
  article-title: Density-dependent quantum Hall states and Zeeman splitting in monolayer and bilayer WSe
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 1032
  year: 2015
  end-page: 1036
  ident: CR99
  article-title: Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene
  publication-title: Nat. Phys.
– volume: 12
  start-page: 207
  year: 2013
  end-page: 211
  ident: CR42
  article-title: Tightly bound trions in monolayer MoS
  publication-title: Nat. Mater.
– volume: 11
  start-page: 477
  year: 2015
  end-page: 481
  ident: CR45
  article-title: Observation of biexcitons in monolayer WSe
  publication-title: Nat. Phys.
– volume: 11
  start-page: 431
  year: 2017
  end-page: 435
  ident: CR103
  article-title: Valley-polarized exciton–polaritons in a monolayer semiconductor
  publication-title: Nat. Photon.
– volume: 17
  start-page: 411
  year: 2018
  end-page: 415
  ident: CR65
  article-title: Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe
  publication-title: Nat. Mater.
– volume: 105
  start-page: 136805
  year: 2010
  ident: CR13
  article-title: Atomically thin MoS : a new direct-gap semiconductor
  publication-title: Phys. Rev. Lett.
– volume: 76
  start-page: 323
  year: 2004
  end-page: 410
  ident: CR36
  article-title: Spintronics: fundamentals and applications
  publication-title: Rev. Mod. Phys.
– volume: 90
  start-page: 161302
  year: 2014
  ident: CR71
  article-title: Exciton valley dynamics probed by Kerr rotation in WSe monolayers
  publication-title: Phys. Rev. B
– volume: 16
  start-page: 876
  year: 2017
  end-page: 877
  ident: CR95
  article-title: Valleytronics: magnetization without polarization
  publication-title: Nat. Mater.
– volume: 344
  start-page: 725
  year: 2014
  end-page: 728
  ident: CR93
  article-title: Electrically switchable chiral light-emitting transistor
  publication-title: Science
– volume: 114
  start-page: 256601
  year: 2015
  ident: CR20
  article-title: Topological valley currents in gapped Dirac materials
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 216
  year: 2016
  end-page: 226
  ident: CR11
  article-title: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides
  publication-title: Nat. Photon.
– volume: 10
  start-page: 343
  year: 2014
  end-page: 350
  ident: CR16
  article-title: Spin and pseudospins in layered transition metal dichalcogenides
  publication-title: Nat. Phys.
– volume: 113
  start-page: 266804
  year: 2014
  ident: CR57
  article-title: Valley splitting and polarization by the Zeeman effect in Monolayer MoSe
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 89
  year: 2012
  end-page: 94
  ident: CR4
  article-title: Field-induced polarization of Dirac valleys in bismuth
  publication-title: Nat. Phys.
– volume: 16
  start-page: 887
  year: 2017
  end-page: 891
  ident: CR23
  article-title: Valley magnetoelectricity in single-layer MoS
  publication-title: Nat. Mater.
– volume: 106
  start-page: 116803
  year: 2011
  ident: CR27
  article-title: Spin and the honeycomb lattice: lessons from graphene
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 534
  year: 2015
  end-page: 540
  ident: CR14
  article-title: Multi-terminal transport measurements of MoS using a van der Waals heterostructure device platform
  publication-title: Nat. Nanotech.
– volume: 95
  start-page: 125420
  year: 2017
  ident: CR30
  article-title: Optical selection rules for excitonic Rydberg series in the massive Dirac cones of hexagonal two-dimensional materials
  publication-title: Phys. Rev. B
– volume: 96
  start-page: 236801
  year: 2006
  ident: CR1
  article-title: Valley polarization in Si(100) at zero magnetic field
  publication-title: Phys. Rev. Lett.
– volume: 99
  start-page: 236809
  year: 2007
  ident: CR5
  article-title: Valley-contrasting physics in graphene: magnetic moment and topological transport
  publication-title: Phys. Rev. Lett.
– volume: 346
  start-page: 1205
  year: 2014
  end-page: 1208
  ident: CR89
  article-title: Ultrafast generation of pseudo-magnetic field for valley excitons in WSe monolayers
  publication-title: Science
– volume: 9
  start-page: 149
  year: 2013
  end-page: 153
  ident: CR25
  article-title: Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS
  publication-title: Nat. Phys.
– volume: 12
  start-page: 677
  year: 2016
  end-page: 682
  ident: CR86
  article-title: Direct measurement of exciton valley coherence in monolayer WSe
  publication-title: Nat. Phys.
– volume: 13
  start-page: 128
  year: 2018
  end-page: 132
  ident: CR97
  article-title: Electrical control of charged carriers and excitons in atomically thin materials
  publication-title: Nat. Nanotech.
– ident: CR52
– volume: 114
  start-page: 037401
  year: 2015
  ident: CR56
  article-title: Breaking of valley degeneracy by magnetic field in monolayer MoSe
  publication-title: Phys. Rev. Lett.
– volume: 351
  start-page: 688
  year: 2016
  end-page: 691
  ident: CR80
  article-title: Valley-polarized exciton dynamics in a 2D semiconductor heterostructure
  publication-title: Science
– volume: 2
  start-page: 17033
  year: 2017
  ident: CR17
  article-title: 2D transition metal dichalcogenides
  publication-title: Nat. Rev. Mater.
– volume: 119
  start-page: 137401
  year: 2017
  ident: CR84
  article-title: Gate-controlled spin-valley locking of resident carriers in WSe monolayers
  publication-title: Phys. Rev. Lett.
– volume: 77
  start-page: 235406
  year: 2008
  ident: CR6
  article-title: Valley-dependent optoelectronics from inversion symmetry breaking
  publication-title: Phys. Rev. B
– volume: 2
  start-page: 034002
  year: 2015
  ident: CR60
  article-title: Magneto-optics in transition metal diselenide monolayers
  publication-title: 2D Mater.
– volume: 120
  start-page: 077401
  year: 2018
  ident: CR29
  article-title: Optical selection rule of excitons in gapped chiral fermion systems
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: e1700518
  year: 2017
  ident: CR83
  article-title: Observation of ultralong valley lifetime in WSe /MoS heterostructures
  publication-title: Sci. Adv.
– volume: 11
  start-page: 141
  year: 2015
  end-page: 147
  ident: CR59
  article-title: Valley Zeeman effect in elementary optical excitations of monolayer WSe
  publication-title: Nat. Phys.
– volume: 110
  start-page: 066803
  year: 2013
  ident: CR69
  article-title: Unconventional quantum Hall effect and tunable spin Hall effect in Dirac materials: application to an isolated MoS trilayer
  publication-title: Phys. Rev. Lett.
– volume: 113
  start-page: 026803
  year: 2014
  ident: CR38
  article-title: Tightly bound excitons in monolayer WSe
  publication-title: Phys. Rev. Lett.
– volume: 346
  start-page: 448
  year: 2014
  end-page: 451
  ident: CR98
  article-title: Detecting topological currents in graphene superlattices
  publication-title: Science
– volume: 94
  start-page: 041301
  year: 2016
  ident: CR50
  article-title: Optical absorption by Dirac excitons in single-layer transition-metal dichalcogenides
  publication-title: Phys. Rev. B
– volume: 93
  start-page: 041413
  year: 2016
  ident: CR105
  article-title: Chiral plasmon in gapped Dirac systems
  publication-title: Phys. Rev. B
– volume: 108
  start-page: 196802
  year: 2012
  ident: CR7
  article-title: Coupled spin and valley physics in monolayers of MoS and other group-VI dichalcogenides
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 1091
  year: 2014
  end-page: 1095
  ident: CR41
  article-title: Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor
  publication-title: Nat. Mater.
– volume: 9
  start-page: 647
  year: 2015
  end-page: 655
  ident: CR47
  article-title: Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor
  publication-title: ACS Nano
– volume: 15
  start-page: 1140
  year: 2016
  end-page: 1144
  ident: CR9
  article-title: Weyl semimetals, Fermi arcs and chiral anomalies
  publication-title: Nat. Mater.
– volume: 90
  start-page: 075413
  year: 2014
  ident: CR75
  article-title: Valley dynamics probed through charged and neutral exciton emission in monolayer WSe
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 634
  year: 2013
  end-page: 638
  ident: CR44
  article-title: Optical generation of excitonic valley coherence in monolayer WSe
  publication-title: Nat. Nanotech.
– volume: 3
  start-page: e1603113
  year: 2017
  ident: CR67
  article-title: Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics
  publication-title: Sci. Adv.
– volume: 120
  start-page: 087402
  year: 2018
  ident: CR28
  article-title: Unifying optical selection rules for excitons in two dimensions: band topology and winding numbers
  publication-title: Phys. Rev. Lett.
– volume: 120
  start-page: 057405
  year: 2017
  ident: CR49
  article-title: Magnetooptics of exciton Rydberg states in a monolayer semiconductor
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 598
  year: 2016
  end-page: 602
  ident: CR96
  article-title: Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide
  publication-title: Nat. Nanotech.
– volume: 7
  start-page: 490
  year: 2012
  end-page: 493
  ident: CR33
  article-title: Valley polarization in MoS monolayers by optical pumping
  publication-title: Nat. Nanotech.
– volume: 88
  start-page: 115140
  year: 2013
  ident: CR68
  article-title: Magnetic control of the valley degree of freedom of massive Dirac fermions with application to transition metal dichalcogenides
  publication-title: Phys. Rev. B
– volume: 116
  start-page: 086601
  year: 2016
  ident: CR15
  article-title: Shubnikov-de Haas oscillations of high-mobility holes in monolayer and bilayer WSe : Landau level degeneracy, effective mass, and negative compressibility
  publication-title: Phys. Rev. Lett.
– volume: 355
  start-page: 1066
  year: 2017
  end-page: 1069
  ident: CR91
  article-title: Large, valley-exclusive Bloch-Siegert shift in monolayer WS
  publication-title: Science
– volume: 11
  start-page: 1027
  year: 2015
  end-page: 1031
  ident: CR100
  article-title: Gate-tunable topological valley transport in bilayer graphene
  publication-title: Nat. Phys.
– volume: 14
  start-page: 202
  year: 2014
  end-page: 206
  ident: CR72
  article-title: Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS
  publication-title: Nano Lett.
– volume: 112
  start-page: 047401
  year: 2014
  ident: CR76
  article-title: Carrier and polarization dynamics in monolayer MoS
  publication-title: Phys. Rev. Lett.
– volume: 86
  start-page: 115409
  year: 2012
  ident: CR53
  article-title: Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides
  publication-title: Phys. Rev. B
– volume: 11
  start-page: 830
  year: 2015
  end-page: 834
  ident: CR81
  article-title: Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS and WS
  publication-title: Nat. Phys.
– volume: 12
  start-page: 757
  year: 2017
  end-page: 762
  ident: CR66
  article-title: Enhanced valley splitting in monolayer WSe due to magnetic exchange field
  publication-title: Nat. Nanotech.
– volume: 12
  start-page: 883
  year: 2017
  end-page: 888
  ident: CR87
  article-title: Magnetic brightening and control of dark excitons in monolayer WSe
  publication-title: Nat. Nanotech.
– volume: 93
  start-page: 205423
  year: 2016
  ident: CR78
  article-title: Exciton radiative lifetime in transition metal dichalcogenide monolayers
  publication-title: Phys. Rev. B
– volume: 11
  start-page: 421
  year: 2016
  end-page: 425
  ident: CR22
  article-title: Electrical control of the valley Hall effect in bilayer MoS transistors
  publication-title: Nat. Nanotech.
– volume: 92
  start-page: 085413
  year: 2015
  ident: CR55
  article-title: Bright and dark singlet excitons via linear and two-photon spectroscopy in monolayer transition-metal dichalcogenides
  publication-title: Phys. Rev. B
– volume: 120
  start-page: 063902
  year: 2017
  ident: CR106
  article-title: Observation of photonic topological valley Hall edge states
  publication-title: Phys. Rev. Lett.
– volume: 86
  start-page: 081301
  year: 2012
  ident: CR35
  article-title: Robust optical emission polarization in MoS monolayers through selective valley excitation
  publication-title: Phys. Rev. B
– volume: 113
  start-page: 4658
  year: 2016
  end-page: 4663
  ident: CR104
  article-title: Chiral plasmons without magnetic field
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 14
  start-page: 889
  year: 2015
  end-page: 893
  ident: CR77
  article-title: Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe
  publication-title: Nat. Mater.
– volume: 18
  start-page: 025012
  year: 2016
  ident: CR107
  article-title: All-Si valley-Hall photonic topological insulator
  publication-title: New J. Phys.
– volume: 4
  year: 2013
  ident: CR43
  article-title: Electrical control of neutral and charged excitons in a monolayer semiconductor
  publication-title: Nat. Commun.
– volume: 16
  start-page: 5010
  year: 2016
  end-page: 5014
  ident: CR82
  article-title: Long-lived hole spin/valley polarization probed by Kerr rotation in monolayer WSe
  publication-title: Nano Lett.
– volume: 18
  start-page: 137
  year: 2018
  end-page: 143
  ident: CR108
  article-title: Electrical tuning of interlayer exciton gases in WSe bilayers
  publication-title: Nano Lett.
– volume: 114
  start-page: 097403
  year: 2015
  ident: CR40
  article-title: Giant enhancement of the optical second-harmonic emission of WSe monolayers by laser excitation at exciton resonances
  publication-title: Phys. Rev. Lett.
– volume: 115
  start-page: 166803
  year: 2015
  ident: CR32
  article-title: Berry phase modification to the energy spectrum of excitons
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 144
  year: 2017
  end-page: 149
  ident: CR70
  article-title: Valley- and spin-polarized Landau levels in monolayer WSe
  publication-title: Nat. Nanotech.
– volume: 113
  start-page: 076802
  year: 2014
  ident: CR37
  article-title: Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS
  publication-title: Phys. Rev. Lett.
– volume: 92
  start-page: 235425
  year: 2015
  ident: CR73
  article-title: Ultrafast valley relaxation dynamics in monolayer MoS probed by nonequilibrium optical techniques
  publication-title: Phys. Rev. B
– volume: 546
  start-page: 270
  year: 2017
  end-page: 273
  ident: CR102
  article-title: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
  publication-title: Nature
– volume: 10
  start-page: 1271
  year: 2010
  end-page: 1275
  ident: CR12
  article-title: Emerging photoluminescence in monolayer MoS
  publication-title: Nano Lett.
– volume: 17
  start-page: 740
  year: 2017
  end-page: 746
  ident: CR61
  article-title: Probing the spin-polarized electronic band structure in monolayer transition metal dichalcogenides by optical spectroscopy
  publication-title: Nano Lett.
– volume: 82
  start-page: 1959
  year: 2010
  end-page: 2007
  ident: CR19
  article-title: Berry phase effects on electronic properties
  publication-title: Rev. Mod. Phys.
– volume: 1
  start-page: 16055
  year: 2016
  ident: CR18
  article-title: Valleytronics in 2D materials
  publication-title: Nat. Rev. Mater.
– volume: 117
  start-page: 257402
  year: 2016
  ident: CR79
  article-title: Long-lived valley polarization of intravalley trions in monolayer WSe
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 842
  year: 2017
  end-page: 847
  ident: CR10
  article-title: Direct optical detection of Weyl fermion chirality in a topological semimetal
  publication-title: Nat. Phys.
– volume: 351
  start-page: 688
  year: 2016
  ident: 204_CR80
  publication-title: Science
  doi: 10.1126/science.aac7820
– volume: 113
  start-page: 4658
  year: 2016
  ident: 204_CR104
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1519086113
– volume: 120
  start-page: 063902
  year: 2017
  ident: 204_CR106
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.063902
– volume: 7
  year: 2016
  ident: 204_CR48
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10643
– volume: 112
  start-page: 047401
  year: 2014
  ident: 204_CR76
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.047401
– volume: 118
  start-page: 237404
  year: 2017
  ident: 204_CR63
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.237404
– volume: 3
  start-page: e1603113
  year: 2017
  ident: 204_CR67
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1603113
– volume: 119
  start-page: 137401
  year: 2017
  ident: 204_CR84
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.137401
– volume: 120
  start-page: 077401
  year: 2018
  ident: 204_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.077401
– volume: 513
  start-page: 214
  year: 2014
  ident: 204_CR39
  publication-title: Nature
  doi: 10.1038/nature13734
– volume: 344
  start-page: 725
  year: 2014
  ident: 204_CR93
  publication-title: Science
  doi: 10.1126/science.1251329
– volume: 1
  start-page: 16055
  year: 2016
  ident: 204_CR18
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.55
– volume: 16
  start-page: 5010
  year: 2016
  ident: 204_CR82
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01727
– volume: 106
  start-page: 116803
  year: 2011
  ident: 204_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.116803
– ident: 204_CR52
  doi: 10.1103/PhysRevLett.120.187401
– volume: 12
  start-page: 856
  year: 2017
  ident: 204_CR88
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2017.106
– volume: 93
  start-page: 041413
  year: 2016
  ident: 204_CR105
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.041413
– volume: 17
  start-page: 740
  year: 2017
  ident: 204_CR61
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03855
– volume: 346
  start-page: 448
  year: 2014
  ident: 204_CR98
  publication-title: Science
  doi: 10.1126/science.1254966
– volume: 120
  start-page: 066402
  year: 2017
  ident: 204_CR64
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.066402
– volume: 344
  start-page: 1489
  year: 2014
  ident: 204_CR21
  publication-title: Science
  doi: 10.1126/science.1250140
– volume: 110
  start-page: 066803
  year: 2013
  ident: 204_CR69
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.066803
– volume: 9
  start-page: 149
  year: 2013
  ident: 204_CR25
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2524
– volume: 12
  start-page: 883
  year: 2017
  ident: 204_CR87
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2017.105
– volume: 118
  start-page: 247701
  year: 2017
  ident: 204_CR62
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.247701
– volume: 120
  start-page: 087402
  year: 2018
  ident: 204_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.087402
– volume: 17
  start-page: 411
  year: 2018
  ident: 204_CR65
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0036-2
– volume: 99
  start-page: 236809
  year: 2007
  ident: 204_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.236809
– volume: 120
  start-page: 057405
  year: 2017
  ident: 204_CR49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.057405
– volume: 13
  start-page: 1091
  year: 2014
  ident: 204_CR41
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4061
– volume: 4
  year: 2013
  ident: 204_CR43
  publication-title: Nat. Commun.
– volume: 95
  start-page: 125420
  year: 2017
  ident: 204_CR30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.125420
– volume: 82
  start-page: 1959
  year: 2010
  ident: 204_CR19
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.1959
– volume: 12
  start-page: 757
  year: 2017
  ident: 204_CR66
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2017.68
– volume: 3
  start-page: e1700518
  year: 2017
  ident: 204_CR83
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700518
– volume: 9
  start-page: 647
  year: 2015
  ident: 204_CR47
  publication-title: ACS Nano
  doi: 10.1021/nn5059908
– volume: 11
  start-page: 148
  year: 2015
  ident: 204_CR58
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3201
– volume: 18
  start-page: 025012
  year: 2016
  ident: 204_CR107
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/2/025012
– volume: 99
  start-page: 102109
  year: 2011
  ident: 204_CR74
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3636402
– volume: 18
  start-page: 137
  year: 2018
  ident: 204_CR108
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b03667
– volume: 77
  start-page: 235406
  year: 2008
  ident: 204_CR6
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.235406
– volume: 7
  start-page: 494
  year: 2012
  ident: 204_CR34
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2012.96
– volume: 8
  start-page: 634
  year: 2013
  ident: 204_CR44
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2013.151
– volume: 14
  start-page: 202
  year: 2014
  ident: 204_CR72
  publication-title: Nano Lett.
  doi: 10.1021/nl403742j
– volume: 2
  start-page: 034002
  year: 2015
  ident: 204_CR60
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/2/3/034002
– volume: 115
  start-page: 166803
  year: 2015
  ident: 204_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.166803
– volume: 15
  start-page: 1140
  year: 2016
  ident: 204_CR9
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4787
– volume: 306
  start-page: 1910
  year: 2004
  ident: 204_CR24
  publication-title: Science
  doi: 10.1126/science.1105514
– volume: 116
  start-page: 086601
  year: 2016
  ident: 204_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.086601
– volume: 86
  start-page: 081301
  year: 2012
  ident: 204_CR35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.081301
– volume: 346
  start-page: 1205
  year: 2014
  ident: 204_CR89
  publication-title: Science
  doi: 10.1126/science.1258122
– volume: 114
  start-page: 256601
  year: 2015
  ident: 204_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.256601
– volume: 13
  start-page: 842
  year: 2017
  ident: 204_CR10
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4146
– volume: 16
  start-page: 876
  year: 2017
  ident: 204_CR95
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4979
– volume: 10
  start-page: 534
  year: 2015
  ident: 204_CR14
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2015.70
– volume: 92
  start-page: 235425
  year: 2015
  ident: 204_CR73
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.235425
– volume: 115
  start-page: 166802
  year: 2015
  ident: 204_CR31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.166802
– volume: 96
  start-page: 236801
  year: 2006
  ident: 204_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.236801
– volume: 117
  start-page: 187401
  year: 2016
  ident: 204_CR92
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.187401
– volume: 12
  start-page: 207
  year: 2013
  ident: 204_CR42
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3505
– volume: 12
  start-page: 144
  year: 2017
  ident: 204_CR70
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2016.213
– volume: 12
  start-page: 760
  year: 2013
  ident: 204_CR2
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3694
– volume: 3
  year: 2012
  ident: 204_CR8
  publication-title: Nat. Commun.
– volume: 105
  start-page: 136805
  year: 2010
  ident: 204_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.136805
– volume: 10
  start-page: 343
  year: 2014
  ident: 204_CR16
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2942
– volume: 10
  start-page: 216
  year: 2016
  ident: 204_CR11
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2015.282
– volume: 11
  start-page: 598
  year: 2016
  ident: 204_CR96
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2016.49
– volume: 111
  start-page: 216805
  year: 2013
  ident: 204_CR51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.216805
– volume: 12
  start-page: 677
  year: 2016
  ident: 204_CR86
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3674
– volume: 92
  start-page: 085413
  year: 2015
  ident: 204_CR55
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.085413
– volume: 94
  start-page: 041301
  year: 2016
  ident: 204_CR50
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.041301
– volume: 11
  start-page: 477
  year: 2015
  ident: 204_CR45
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3324
– volume: 8
  start-page: 89
  year: 2012
  ident: 204_CR4
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2111
– volume: 88
  start-page: 085433
  year: 2013
  ident: 204_CR26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.085433
– volume: 88
  start-page: 115140
  year: 2013
  ident: 204_CR68
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.115140
– volume: 14
  start-page: 889
  year: 2015
  ident: 204_CR77
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4356
– volume: 11
  start-page: 431
  year: 2017
  ident: 204_CR103
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2017.86
– volume: 11
  start-page: 421
  year: 2016
  ident: 204_CR22
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2015.337
– volume: 11
  start-page: 141
  year: 2015
  ident: 204_CR59
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3203
– volume: 92
  start-page: 125417
  year: 2015
  ident: 204_CR46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.125417
– volume: 118
  start-page: 096602
  year: 2017
  ident: 204_CR94
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.096602
– volume: 2
  start-page: 17033
  year: 2017
  ident: 204_CR17
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.33
– volume: 11
  start-page: 1032
  year: 2015
  ident: 204_CR99
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3551
– volume: 16
  start-page: 887
  year: 2017
  ident: 204_CR23
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4931
– volume: 114
  start-page: 037401
  year: 2015
  ident: 204_CR56
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.037401
– volume: 90
  start-page: 161302
  year: 2014
  ident: 204_CR71
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.161302
– volume: 76
  start-page: 323
  year: 2004
  ident: 204_CR36
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.76.323
– volume: 7
  start-page: 490
  year: 2012
  ident: 204_CR33
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2012.95
– volume: 86
  start-page: 115409
  year: 2012
  ident: 204_CR53
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.115409
– volume: 355
  start-page: 1066
  year: 2017
  ident: 204_CR91
  publication-title: Science
  doi: 10.1126/science.aal2241
– volume: 93
  start-page: 205423
  year: 2016
  ident: 204_CR78
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.205423
– volume: 113
  start-page: 076802
  year: 2014
  ident: 204_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.076802
– volume: 108
  start-page: 196802
  year: 2012
  ident: 204_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.196802
– volume: 11
  start-page: 830
  year: 2015
  ident: 204_CR81
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3419
– volume: 10
  start-page: 1271
  year: 2010
  ident: 204_CR12
  publication-title: Nano Lett.
  doi: 10.1021/nl903868w
– volume: 117
  start-page: 257402
  year: 2016
  ident: 204_CR79
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.257402
– volume: 113
  start-page: 266804
  year: 2014
  ident: 204_CR57
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.266804
– volume: 14
  start-page: 290
  year: 2015
  ident: 204_CR90
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4156
– volume: 13
  start-page: 128
  year: 2018
  ident: 204_CR97
  publication-title: Nat. Nanotech.
  doi: 10.1038/s41565-017-0030-x
– volume: 546
  start-page: 265
  year: 2017
  ident: 204_CR101
  publication-title: Nature
  doi: 10.1038/nature22060
– volume: 13
  start-page: 26
  year: 2017
  ident: 204_CR85
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3891
– volume: 546
  start-page: 270
  year: 2017
  ident: 204_CR102
  publication-title: Nature
  doi: 10.1038/nature22391
– volume: 11
  start-page: 1027
  year: 2015
  ident: 204_CR100
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3485
– volume: 97
  start-page: 186404
  year: 2006
  ident: 204_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.186404
– volume: 113
  start-page: 026803
  year: 2014
  ident: 204_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.026803
– volume: 114
  start-page: 097403
  year: 2015
  ident: 204_CR40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.097403
– volume: 90
  start-page: 075413
  year: 2014
  ident: 204_CR75
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.075413
– volume: 91
  start-page: 075310
  year: 2015
  ident: 204_CR54
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.075310
SSID ssj0053922
Score 2.6794274
SecondaryResourceType review_article
Snippet The emergence of two-dimensional Dirac materials, particularly transition metal dichalcogenides (TMDs), has reinvigorated interest in valleytronics, which...
Not provided.
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 451
SubjectTerms 639/301/357
639/766/1130
639/925/357
Applied and Technical Physics
Degrees of freedom
Information processing
Information storage
Optics
Physics
Physics and Astronomy
Quantum Physics
Review Article
Topology
Title Light–valley interactions in 2D semiconductors
URI https://link.springer.com/article/10.1038/s41566-018-0204-6
https://www.proquest.com/docview/2077457238
https://www.osti.gov/biblio/1539841
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu3DhjRgbUw-cQBFdmj5yQrzGhAAhBBK3qGnSE1rHOpC48R_4h_wS7DZlAgmOVdNU-uLY_mLHBthLhQyMLzVDX0EwEceGSSEpy5xb7efS2KqW3vVNNHoQl4_hoztwK11aZaMTK0VtiozOyOkkJBYhtcg6mjwz6hpF0VXXQmMR2qiCEyRf7ZPzm9u7RheHaP15fSVSMhTVsIlrBslhWVEXpNIJowuiLPphmVoF7rAfXuevQGllf4arsOwcR--4Xuk1WLDjdVhxTqTntmi5Af4V0e3P949X6pLy5lE9iGl9e6HEB4-feSUlxBdjqvRaTMtNeBie35-OmGuLwDIkYzNmdGQGAnlMrFM94DbmXAdRmgqbhKnkJsxkpmMTB8gFaGTkGx5kQuLezdEZyIMtaI2Lsd0GjyOmNg9zjeihYbLSJDiBr9NwkCOT0R3wG0hU5mqGU-uKJ1XFroNE1SgqRFERiirqwP73J5O6YMZ_g7uEs0JrTyVrM8rtyWYKtbBMxKADvQZ-5XZWqeZy0IGDZknmr__81c7_k3VhiVeiQKl9PWjNpi92F92Nme7DYjK86DvJ-gJcj892
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6F9ACX0vJQQ1LqA70UrXB21489IIQKaShJTiBxW7ze9QnFNE5B3PgP_A9-FL-EGT-KQCq3HC2v19LsPL7ZeQHsJFIJ6yvDECtIJqPIMiUVZZlzZ_xMWVf20htPwuG5_H0RXLTgsamFobTKRieWitrmKd2R001IJAMakXVw_YfR1CiKrjYjNCq2OHV3t-iyFfsnR3i-3zkfHJ_9HLJ6qgBL0ZeZM2tC25foBkQmMX3uIs6NCJNEujhIFLdBqlIT2UgglKaVoW-5SKVC1s_QlmYC912CD1IIRRIVD341mj9ArMGrAkzFUDCCJooq4r2idJTQcY8ZlaOy8JUdbOcoz68w7puwbGntBp_gYw1TvcOKrz5Dy03XYLWGrF6tEIp18Efk3D_dP9zQTJY7j7pPzKpaiQIfPH7kFZR-n0-pr2w-KzbgfCHk2oT2NJ-6L-BxPEGXBZlBc4lm0Ckb4wa-SYJ-hn6T6YDfkESndYdyGpRxpctIuYh1RUWNVNRERR124Me_T66r9hzvLe4SnTViC2qQm1ImUTrXqPNVLPsd6DXk17UcF_qF6zqw2xzJy-v__mrr_c2-wfLwbDzSo5PJaRdWeMkWlFTYg_Z89td9RaAzN9sld3lwuWh2fgZsogkN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsQwDLVgkBAXdsSw9gAXUEQnTZccEAKGEesIIZC4haZJT2gK0wHEjX_gb_gcvgS7CwgkuHGs2qaqY8fvxY4NsBYL6RlXaoZYQTARhoZJISnLnFvtptLYopbeWTc4vBLH1_71ELzVZ2EorbJeE4uF2mQJ7ZHTTkgofGqRtZVWaRHn7c7O3T2jDlIUaa3baZQqcmKfn5C-5dtHbZzrdc47B5f7h6zqMMAS5DUDZnRgWgIpQahj3eI25Fx7QRwLG_mx5MZPZKJDE3oIq-nJwDXcS4REM0jRr6YejjsMIyGyIrcBI3sH3fOL2g_4iDx4eRxTMjQTv46p4h_kBW1CGh8xOpzKgm9esZGhdX9DvD-CtIXv60zCeAVand1Sy6ZgyPamYaICsE61POQz4J4S1X9_eX2kDi3PDtWi6JcnJ3K8cHjbySkZP-tRldmsn8_C1b8IbA4avaxn58HhOJ829VONzhOdopUmwgFcHfutFFmUboJbi0QlVb1yaptxq4q4uRepUooKpahIiipowsbnK3dlsY6_Hl4kOStEGlQuN6G8omSg0APISLSasFSLX1VWnasvHWzCZj0lX7d__dTC34Otwiiqsjo96p4swhgvtIIyDJegMeg_2GVEPQO9UqmXAzf_rdEfcr4Onw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light%E2%80%93valley+interactions+in+2D+semiconductors&rft.jtitle=Nature+photonics&rft.au=Mak%2C+Kin+Fai&rft.au=Xiao%2C+Di&rft.au=Shan%2C+Jie&rft.date=2018-08-01&rft.pub=Nature+Publishing+Group&rft.issn=1749-4885&rft.eissn=1749-4893&rft.volume=12&rft.issue=8&rft_id=info:doi/10.1038%2Fs41566-018-0204-6&rft.externalDocID=1539841
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-4885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-4885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-4885&client=summon