Review of single-camera stereo-digital image correlation techniques for full-field 3D shape and deformation measurement

Single-camera stereo-digital image correlation (stereo-DIC) techniques have gained increasing attentions and demonstrated excellent prospects in the experimental mechanics community owing to their prominent advantages of cost-effectiveness, compactness, and the avoidance of the complicated camera sy...

Full description

Saved in:
Bibliographic Details
Published inScience China. Technological sciences Vol. 61; no. 1; pp. 2 - 20
Main Authors Pan, Bing, Yu, LiPing, Zhang, QianBing
Format Journal Article
LanguageEnglish
Published Beijing Science China Press 01.01.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1674-7321
1869-1900
DOI10.1007/s11431-017-9090-x

Cover

Loading…
More Information
Summary:Single-camera stereo-digital image correlation (stereo-DIC) techniques have gained increasing attentions and demonstrated excellent prospects in the experimental mechanics community owing to their prominent advantages of cost-effectiveness, compactness, and the avoidance of the complicated camera synchronization. Using additional optical devices, e.g. a diffraction grating, a bi-prism or a set of planar mirrors, pseudo stereo images of a test sample surface can be recorded with a single camera. By correlating these stereo images using DIC, full-field three-dimensional (3D) shape and deformation can be retrieved. This review comprehensively summarizes the historical development, methodologies, strengths and weaknesses of the diffraction grating-based, prism-based, four-mirror-adaptor-based single-camera stereo-DIC techniques, and the recently proposed novel full-frame single color camera-based stereo-DIC technique for full-field 3D shape and deformation measurement. The optical arrangements, principles and calibration procedures of these single-camera stereo-DIC techniques are described in detail. Since high-speed deformation measurement is efficiently achieved by combining the single-camera stereo-DIC with one high-speed camera, single-camera stereo-DIC techniques show great potential in impact engineering, vibration and other dynamic tests.
Bibliography:single-camera stereo-DIC, diffraction grating, bi-prism, four-mirror adapter
11-5845/TH
Single-camera stereo-digital image correlation (stereo-DIC) techniques have gained increasing attentions and demonstrated excellent prospects in the experimental mechanics community owing to their prominent advantages of cost-effectiveness, compactness, and the avoidance of the complicated camera synchronization. Using additional optical devices, e.g. a diffraction grating, a bi-prism or a set of planar mirrors, pseudo stereo images of a test sample surface can be recorded with a single camera. By correlating these stereo images using DIC, full-field three-dimensional (3D) shape and deformation can be retrieved. This review comprehensively summarizes the historical development, methodologies, strengths and weaknesses of the diffraction grating-based, prism-based, four-mirror-adaptor-based single-camera stereo-DIC techniques, and the recently proposed novel full-frame single color camera-based stereo-DIC technique for full-field 3D shape and deformation measurement. The optical arrangements, principles and calibration procedures of these single-camera stereo-DIC techniques are described in detail. Since high-speed deformation measurement is efficiently achieved by combining the single-camera stereo-DIC with one high-speed camera, single-camera stereo-DIC techniques show great potential in impact engineering, vibration and other dynamic tests.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1674-7321
1869-1900
DOI:10.1007/s11431-017-9090-x