Understanding the molecular basis of fragile X syndrome

Fragile X syndrome, a common form of inherited mental retardation, is mainly caused by massive expansion of CGG triplet repeats located in the 5'-untranslated region of the fragile X mental retardation-1 ( FMR1 ) gene. In patients with fragile X syndrome, the expanded CGG triplet repeats are hy...

Full description

Saved in:
Bibliographic Details
Published inHuman molecular genetics Vol. 9; no. 6; pp. 901 - 908
Main Authors PENG JIN, WARREN, S. T
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 12.04.2000
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fragile X syndrome, a common form of inherited mental retardation, is mainly caused by massive expansion of CGG triplet repeats located in the 5'-untranslated region of the fragile X mental retardation-1 ( FMR1 ) gene. In patients with fragile X syndrome, the expanded CGG triplet repeats are hypermethylated and the expression of the FMR1 gene is repressed, which leads to the absence of FMR1 protein (FMRP) and subsequent mental retardation. FMRP is an RNA-binding protein that shuttles between the nucleus and cytoplasm. This protein has been implicated in protein translation as it is found associated with polyribosomes and the rough endoplasmic reticulum. We discuss here the recent progress made towards understanding the molecular mechanism of CGG repeat expansion and physiological function(s) of FMRP. These studies will not only help to illuminate the molecular basis of the general class of human diseases with trinucleotide repeat expansion but also provide an avenue to understand aspects of human cognition and intelligence.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
ObjectType-Review-3
content type line 23
ObjectType-Feature-3
ObjectType-Review-1
ISSN:0964-6906
1460-2083
1460-2083
DOI:10.1093/hmg/9.6.901