From General Circulation to Global Change: The Evolution, Achievements, and Influences of Duzheng Ye’s Scientific Research

Duzheng Ye (Tu-cheng Yeh) was an active member of Rossby’s Chicago School, one of the founders of modern meteorology in China since the 1950s, and a pioneer of global change science in China and over the world. His achievements have been central to the development of atmospheric and climate dynamics...

Full description

Saved in:
Bibliographic Details
Published inAtmosphere Vol. 14; no. 8; p. 1202
Main Author Lu, Jianhua
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Duzheng Ye (Tu-cheng Yeh) was an active member of Rossby’s Chicago School, one of the founders of modern meteorology in China since the 1950s, and a pioneer of global change science in China and over the world. His achievements have been central to the development of atmospheric and climate dynamics and global change studies in China, and many of them remain to be fundamental in the context of global climate change. In this review, his lifelong research career is divided into five periods: (1) the preparatory period (1935–1944); (2) the Chicago period (1945–1950); (3) the period of breaking ground (1950–1966); (4) the period of transition (1972–1983); and (5) the period of global change (1984–2013). The evolution of Yeh’s main achievements is described in the context of the historical background of both China and the world. These well-known achievements included the theory of energy dispersion in the atmosphere, the general circulation of the atmosphere (GCA) over East Asia and the globe, Qinghai–Tibetan Plateau meteorology, the scale-dependence theory of geostrophic adaptation (adjustment), and his pioneering ideas on global change. Special emphases are put on some of Yeh’s investigations that were well ahead of his time, such as his investigations on trade inversion, the GCA as an internally consistent whole, abrupt seasonal changes in the GCA, the physical mechanism of atmospheric blocking, and orderly human activities.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos14081202