A Two-way Stratosphere-Troposphere Coupling of Submonthly Zonal-Mean Circulations in the Arctic

This paper examines the dominant submonthly variability of zonally symmetrical atmospheric circula- tion in the Northern Hemisphere (NH) winter within the context of the Northern Annular Mode (NAM), with particular emphasis on interactive stratosphere-troposphere processes. The submonthly variabilit...

Full description

Saved in:
Bibliographic Details
Published inAdvances in atmospheric sciences Vol. 30; no. 6; pp. 1771 - 1785
Main Author 李晓峰 李建平 Xiangdong ZHANG
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2013
Springer Nature B.V
State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029%International Arctic Research Center, University of Alaska Fairbanks, Fairbanks,Alaska 99775, United States
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper examines the dominant submonthly variability of zonally symmetrical atmospheric circula- tion in the Northern Hemisphere (NH) winter within the context of the Northern Annular Mode (NAM), with particular emphasis on interactive stratosphere-troposphere processes. The submonthly variability is identified and measured using a daily NAM index, which concentrates primarily on zonally symmetrical circulation. A schematic lifecycle of submonthly variability is developed that reveals a two-way coupling pro- cess between the stratosphere and troposphere in the NH polar region. Specifically, anomalous tropospheric zonal winds in the Atlantic and Pacific sectors of the Arctic propagate upwards to the low stratosphere, disturbing the polar vortex, and resulting in an anomalous stratospheric geopotential height (HGT) that subsequently propagates down into the troposphere and changes the sign of the surface circulations. From the standpoint of planetary-scale wave activities, a feedback loop is also evident when the anoma- lous planetary-scale waves (with wavenumbers 2 and 3) propagate upwards, which disturbs the anomalous zonally symmetrical flow in the low stratosphere, and induces the anomalous HGT to move poleward in the low stratosphere, and then propagates down into the troposphere. This increases the energy of waves at wavenumbers 2 and 3 in the low troposphere in middle latitudes by enhancing the land-sea contrast of the anomalous HGT field. Thus, this study supports the viewpoint that the downward propagation of stratospheric NAM signals may not originate in the stratosphere.
Bibliography:This paper examines the dominant submonthly variability of zonally symmetrical atmospheric circula- tion in the Northern Hemisphere (NH) winter within the context of the Northern Annular Mode (NAM), with particular emphasis on interactive stratosphere-troposphere processes. The submonthly variability is identified and measured using a daily NAM index, which concentrates primarily on zonally symmetrical circulation. A schematic lifecycle of submonthly variability is developed that reveals a two-way coupling pro- cess between the stratosphere and troposphere in the NH polar region. Specifically, anomalous tropospheric zonal winds in the Atlantic and Pacific sectors of the Arctic propagate upwards to the low stratosphere, disturbing the polar vortex, and resulting in an anomalous stratospheric geopotential height (HGT) that subsequently propagates down into the troposphere and changes the sign of the surface circulations. From the standpoint of planetary-scale wave activities, a feedback loop is also evident when the anoma- lous planetary-scale waves (with wavenumbers 2 and 3) propagate upwards, which disturbs the anomalous zonally symmetrical flow in the low stratosphere, and induces the anomalous HGT to move poleward in the low stratosphere, and then propagates down into the troposphere. This increases the energy of waves at wavenumbers 2 and 3 in the low troposphere in middle latitudes by enhancing the land-sea contrast of the anomalous HGT field. Thus, this study supports the viewpoint that the downward propagation of stratospheric NAM signals may not originate in the stratosphere.
LI Xiaofeng, LI Jianpingand Xiangdong ZHANG( 1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029 2International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States)
zonal-mean circulation, stratosphere-troposphere interaction, polar vortex, Northern Hemi-sphere Annular Mode
11-1925/O4
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0256-1530
1861-9533
DOI:10.1007/s00376-013-2210-4