Hidden behind thromboinflammation: revealing the roles of von Willebrand factor in sickle cell disease pathophysiology

This review provides an update on the pathophysiology of sickle cell disease (SCD) with a particular focus on the dysregulation of the von Willebrand factor (VWF) - ADAMTS13 axis that contributes to its pathogenesis. In discussing recent developments, we hope to encourage new and ongoing discussions...

Full description

Saved in:
Bibliographic Details
Published inCurrent opinion in hematology Vol. 30; no. 3; p. 86
Main Authors Vital, Eudorah F, Lam, Wilbur A
Format Journal Article
LanguageEnglish
Published United States 01.05.2023
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:This review provides an update on the pathophysiology of sickle cell disease (SCD) with a particular focus on the dysregulation of the von Willebrand factor (VWF) - ADAMTS13 axis that contributes to its pathogenesis. In discussing recent developments, we hope to encourage new and ongoing discussions surrounding therapeutic targets for SCD. Within the last 5 years, the role of VWF in the pathophysiology of SCD has been further elucidated and is now a target of study in ongoing clinical trials. The pathophysiology of SCD is multifaceted, as it involves systemwide vascular activation, altered blood rheology, and the activation of immune responses and coagulative pathways. The presence of VWF in excess in SCD, particularly in its largest multimeric form, greatly contributes to its pathogenesis. Understanding the molecular mechanisms that underly the presence of large VWF multimers in SCD will provide further insight into the pathogenesis of SCD and provide specific targets for therapy.
ISSN:1531-7048
DOI:10.1097/MOH.0000000000000755