The Cytoplasmic Domain of L-Selectin Participates in Regulating L-Selectin Endoproteolysis

Neutrophil recruitment at sites of inflammation is regulated by a series of adhesion and activation events. L-selectin (CD62L) is a leukocyte expressed adhesion protein that is important for neutrophil accumulation and rolling along the vascular endothelium. L-selectin is unique from other adhesion...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 167; no. 3; pp. 1617 - 1623
Main Authors Matala, Erik, Alexander, Shelia R, Kishimoto, Takashi K, Walcheck, Bruce
Format Journal Article
LanguageEnglish
Published United States Am Assoc Immnol 01.08.2001
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Neutrophil recruitment at sites of inflammation is regulated by a series of adhesion and activation events. L-selectin (CD62L) is a leukocyte expressed adhesion protein that is important for neutrophil accumulation and rolling along the vascular endothelium. L-selectin is unique from other adhesion molecules involved in leukocyte transmigration in that its adhesiveness appears to be regulated partly by rapid endoproteolysis. Cleavage of L-selectin occurs within a membrane-proximal region that results in ectodomain shedding and retention of a 6-kDa transmembrane fragment. The cleavage domain of L-selectin has been well characterized through mutational analysis. Whether the cytoplasmic domain of L-selectin also plays a role in regulating shedding is controversial. We have previously shown that the Ca(2+)-sensing protein calmodulin (CaM) constitutively associates with the cytoplasmic domain of L-selectin in transfected cell lines. However, in the absence of mapping and mutational analysis of the CaM-binding region of L-selectin, there remains no direct evidence that this interaction affects shedding. Using synthesized peptides and expressed L-selectin constructs, we demonstrate that CaM binding activity occurs in the membrane-proximal region of the cytoplasmic domain. Mutations engineered in this region that prevent CaM binding increase the proteolytic turnover of L-selectin. Moreover, we demonstrate that CaM binding to the 6-kDa transmembrane fragment is greatly reduced compared with intact L-selectin in neutrophils, suggesting that CaM binding is regulated. These data imply that the cytoplasmic domain of L-selectin can regulate shedding by a mechanism in which bound CaM may operate as a negative effector.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.167.3.1617