Release of particles and metals into seawater following sediment resuspension of a coastal mine tailings disposal off Portmán Bay, Southern Spain

Portmán Bay in Southern Spain is one of the most extreme cases in Europe of anthropogenic impact on the marine ecosystem by the disposal of mine tailings resulting from the processing of sulphide ores. First, the composition and extent of the surficial deposit were investigated from geochemical and...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 28; no. 35; pp. 47973 - 47990
Main Authors Bourrin, François, Uusõue, Mirjam, Artigas, Miquel Canals, Sànchez-Vidal, Anna, Aubert, Dominique, Menniti, Christophe, Klar, Jessica
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2021
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Portmán Bay in Southern Spain is one of the most extreme cases in Europe of anthropogenic impact on the marine ecosystem by the disposal of mine tailings resulting from the processing of sulphide ores. First, the composition and extent of the surficial deposit were investigated from geochemical and metal analysis on high spatial density of sediment samples. Then, a disturbance experiment was conducted in the coastal area off Portmán Bay in order to investigate the potential impact of mining activities on marine ecosystems. Two research vessels were used for that experiment, one performing as a trawler resuspending bottom sediments while the other monitor the behaviour of turbid plumes thus generated and the evolution of their characteristics through time by using a range of acoustic and optical tools together with water and bottom sediment sampling for biogeochemical and metal analyses. The surficial part of the submarine extension of the mine tailings deposit is highly concentrated in As, Cd, Pb, Fe and Zn with peak concentrations adjacent to the present coastline, from where they decrease seawards before reaching average values for the Mediterranean Sea around 50-m water depth. The artificially triggered resuspension of the surface layer of the deposit led to the formation of resuspension plume about 100 m in width and up to 6 m in height. Resuspended plume was composed of fine particles which rapidly aggregated into flocs of 100 μm. While the biggest particles settled rapidly, the finest fraction remained in suspension during at least 3 h. Resuspended sediment and metal concentrations in particles remained at relatively high levels throughout the experiments following triggering. Fe, Pb, and As concentrations in resuspended particles showed a continuous increase while trawling before decreasing in parallel with the settling down of the resuspended sediments. Those metals have higher affinity with fine particles than with coarse ones, so that while the coarsest fraction from sediment plumes settled first, the finest fraction remained in suspension thus increasing the metals/sediments concentration ratio. On the other hand, Cd and Zn concentrations in suspended particles did not change significantly over time, which is thought to be caused by the fast dissolution of such metals in seawater. Beyond waste dumping itself, the observed increase in some metals in marine particulate material could have a significant impact on the adjacent coastal ecosystems due to their toxicity above certain thresholds. The consequences of the resuspension experiment here presented can be extrapolated to the impact of seafloor mining activities leading to the resuspension of metal-rich particle plumes into the water column. The experimental set-up presented here may be further explored for investigating metal behaviour during seafloor mining activities.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-021-14006-1