Analysis of the Ammonia Production Rates by Nitrogenase

Ammonia (NH3) is produced industrially by the Haber–Bosch process from dinitrogen (N2) and dihydrogen (H2) using high temperature and pressure with an iron catalyst. In contrast to the extreme conditions used in the Haber–Bosch process, biology has evolved nitrogenase enzymes, which operate at ambie...

Full description

Saved in:
Bibliographic Details
Published inCatalysts Vol. 12; no. 8; p. 844
Main Authors Rapson, Trevor D., Wood, Craig C.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ammonia (NH3) is produced industrially by the Haber–Bosch process from dinitrogen (N2) and dihydrogen (H2) using high temperature and pressure with an iron catalyst. In contrast to the extreme conditions used in the Haber–Bosch process, biology has evolved nitrogenase enzymes, which operate at ambient temperature and pressure. In biological settings, nitrogenase requires large amounts of energy in the form of ATP, using at least 13 GJ ton−1 of ammonia. In 2016, Brown et al. reported ATP-free ammonia production by nitrogenase. This result led to optimism that the energy demands of nitrogenase could be reduced. More recent reports confirmed the ATP-free production of ammonia; however, the rates of reaction are at least an order of magnitude lower. A more detailed understanding of the role of ATP in nitrogenase catalysis is required to develop ATP-free catalytic systems with higher ammonia production rates. Finally, we calculated the theoretical maximal ammonia production rate by nitrogenase and compared it to currently used Haber–Bosch catalysts. Somewhat surprisingly, nitrogenase has a similar theoretical maximum rate to the Haber–Bosch catalysts; however, strategies need to be developed to allow the enzyme to maintain operation at its optimal rate.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal12080844