Human Glioma-Induced Immunosuppression Involves Soluble Factor(s) That Alters Monocyte Cytokine Profile and Surface Markers
Patients with gliomas exhibit deficient in vitro and in vivo T cell immune activity, and human glioblastoma culture supernatants (GCS) inhibit in vitro T lymphocyte responses. Because APC are essential for initiating and regulating T cell responses, we investigated whether GCS would affect cytokines...
Saved in:
Published in | The Journal of immunology (1950) Vol. 162; no. 8; pp. 4882 - 4892 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Am Assoc Immnol
15.04.1999
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Patients with gliomas exhibit deficient in vitro and in vivo T cell immune activity, and human glioblastoma culture supernatants (GCS) inhibit in vitro T lymphocyte responses. Because APC are essential for initiating and regulating T cell responses, we investigated whether GCS would affect cytokines produced by monocytes and T cells from healthy donors of PBMC. Incubation of PBMC with GCS decreased production of IL-12, IFN-gamma, and TNF-alpha, and increased production of IL-6 and IL-10. The GCS-induced changes in IL-12 and IL-10 occurred in monocytes, and involved changes in IL-12 p40 and IL-10 mRNA expression. Incubation with GCS also resulted in reduced expression of MHC class II and of CD80/86 costimulatory molecules on monocytes. The immunosuppressive effects were not the result of IL-6 or TGF-beta1 that was detected in GCS. However, it was due to a factor(s) that is resistant to pH extremes, differentially susceptible to temperature, susceptible to trypsin, and has a minimum molecular mass of 40 kDa. Our findings show that glioblastoma-generated factors that are known to suppress T cell responses alter the cytokine profiles of monocytic APC that, in turn, inhibit T cell function. This model indicates that monocytes can serve as an intermediate between tumor-generated immune-suppressive factors and the T cell responses that are suppressed in gliomas. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.162.8.4882 |