Superhydrophobic Ru Catalyst for Highly Efficient Hydrogenation of Phenol under Mild Aqueous Conditions
Selective hydrogenations of lignin-derived phenolic compounds represent essential processes in the chemical industry, especially for production of a multitude of fine chemicals. However, selective hydrogenation of phenolic compounds in water phase suffers from low conversion. Here we report a cataly...
Saved in:
Published in | Catalysts Vol. 12; no. 9; p. 995 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Selective hydrogenations of lignin-derived phenolic compounds represent essential processes in the chemical industry, especially for production of a multitude of fine chemicals. However, selective hydrogenation of phenolic compounds in water phase suffers from low conversion. Here we report a catalyst of well-dispersed Ru clusters fixed in N-doped mesoporous hollow carbon spheres (Ru@N-CS) for enhanced cyclohexanol productivity in phenol hydrogenation at mild aqueous condition. This superhydrophobicity carbon spheres appear to selectively allow diffusion of phenol and hydrogen molecules to the electron-rich coordination unsaturated Ru active sites, while confining the reactants there to enhance its reaction probability. The Ru@N-CS catalyst can selectively hydrogenate phenol at 80 °C and 0.5 MPa of H2 in 30 min in aqueous medium with phenol conversions of 100% and ~100% cyclohexanol selectivity, corresponding to cyclohexanol productivity up to 471 per g of Ru per minute. The TOF value is up to 9980 h−1, which 14 times more than Ru nanoparticles supported on N-doped carbon hollow spheres (Ru/N-CS). This work provides an important catalytic system for upgrading of bio-oil into value-added chemicals under mild aqueous-phase. |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal12090995 |