Fe-g-C3N4/graphitized mesoporous carbon composite as an effective Fenton-like catalyst in a wide pH range
[Display omitted] •Modified g-C3N4 is used as a Fenton-like catalyst in a wide pH range.•The prepared Fe-g-C3N4/GMC catalyst is adaptable to different organic pollutants.•Fe-N centers as active sites were proved.•The enhancement of electron transfer is responsive for these excellent performances. He...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 201; pp. 232 - 240 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Modified g-C3N4 is used as a Fenton-like catalyst in a wide pH range.•The prepared Fe-g-C3N4/GMC catalyst is adaptable to different organic pollutants.•Fe-N centers as active sites were proved.•The enhancement of electron transfer is responsive for these excellent performances.
Heterogeneous Fe-N complexes are a kind of promising catalysts for the Fenton-like reaction. The present study selected a stable and inexpensive g-C3N4 as the chelating agent and combined with the graphitized mesoporous carbon (GMC). The fabricated Fe-g-C3N4/GMC composite was characterized by several techniques including FTIR, XRD, XPS, TEM and STXM. Results showed clear sheets of g-C3N4 and graphite with Fe evenly distributed mostly in the Fe-N coordination form. The catalyst expressed high activity in the Fenton-like reaction in a wide pH range of 4–10. 99.2% removal of Acid Red 73 was obtained in 40min, and the degradation data well fitted with the pseudo-first-order kinetics model. By correlating the constant of reaction rates calculated from the model and the Fe speciation contents of the samples prepared at different conditions, we deduced that Fe-N species are the most important active sites for the Fenton-like reaction. More importantly, hydroxyl radicals played a great role in the whole reaction yet their generation was independent of visible light. Cyclic voltammetry results confirmed that the GMC can accelerate the Fe(III)/Fe(II) redox cycle by enhancing electron transfer, and thus enable this Fenton-like catalyst to perform well in a wide pH range. |
---|---|
AbstractList | [Display omitted]
•Modified g-C3N4 is used as a Fenton-like catalyst in a wide pH range.•The prepared Fe-g-C3N4/GMC catalyst is adaptable to different organic pollutants.•Fe-N centers as active sites were proved.•The enhancement of electron transfer is responsive for these excellent performances.
Heterogeneous Fe-N complexes are a kind of promising catalysts for the Fenton-like reaction. The present study selected a stable and inexpensive g-C3N4 as the chelating agent and combined with the graphitized mesoporous carbon (GMC). The fabricated Fe-g-C3N4/GMC composite was characterized by several techniques including FTIR, XRD, XPS, TEM and STXM. Results showed clear sheets of g-C3N4 and graphite with Fe evenly distributed mostly in the Fe-N coordination form. The catalyst expressed high activity in the Fenton-like reaction in a wide pH range of 4–10. 99.2% removal of Acid Red 73 was obtained in 40min, and the degradation data well fitted with the pseudo-first-order kinetics model. By correlating the constant of reaction rates calculated from the model and the Fe speciation contents of the samples prepared at different conditions, we deduced that Fe-N species are the most important active sites for the Fenton-like reaction. More importantly, hydroxyl radicals played a great role in the whole reaction yet their generation was independent of visible light. Cyclic voltammetry results confirmed that the GMC can accelerate the Fe(III)/Fe(II) redox cycle by enhancing electron transfer, and thus enable this Fenton-like catalyst to perform well in a wide pH range. |
Author | Yang, Qunfeng Liu, Weiping Ma, Jianqing Wen, Yuezhong |
Author_xml | – sequence: 1 givenname: Jianqing surname: Ma fullname: Ma, Jianqing organization: Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China – sequence: 2 givenname: Qunfeng surname: Yang fullname: Yang, Qunfeng organization: Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China – sequence: 3 givenname: Yuezhong surname: Wen fullname: Wen, Yuezhong email: wenyuezhong@zju.edu.cn organization: Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China – sequence: 4 givenname: Weiping surname: Liu fullname: Liu, Weiping organization: Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China |
BookMark | eNqFkEFOwzAQRS0EEi1wAxa-QFLHdhKHBRKqKEWqYANra-JMiktrR7YBwelJVVYsYDX60rw_mjclx847JOSyYHnBimq2yWEwkNqcjylnKmdSHZFJoWqRCaXEMZmwhleZELU4JdMYN4wxLriaELvAbJ3NxYOcrQMMLzbZL-zoDqMffPBvkRoIrXfU-N3go01IIVJwFPseTbLvSBfoknfZ1r7iuJxg-xkTtY4C_bAd0mFJA7g1npOTHrYRL37mGXle3D7Nl9nq8e5-frPKjGRNyqCVZctF39RGgSxZ2_GiNuOtqm5LziSoBoqqaNqmF7wC2fPKYNUzURqoO8nEGZGHXhN8jAF7PQS7g_CpC6b3uvRGH3TpvS7NlB51jdjVL8zYBMl6lwLY7X_w9QHG8bF3i0FHY9EZ7GwYLenO278LvgGJ94ua |
CitedBy_id | crossref_primary_10_3390_separations11120356 crossref_primary_10_1016_j_cej_2020_128400 crossref_primary_10_1016_j_jphotochem_2020_112591 crossref_primary_10_1016_j_optmat_2022_112043 crossref_primary_10_1016_j_ccr_2021_214338 crossref_primary_10_1021_acsnano_8b04693 crossref_primary_10_1039_D2DT04012C crossref_primary_10_1039_D0CY00343C crossref_primary_10_1016_j_cplett_2022_140222 crossref_primary_10_1002_smll_201902744 crossref_primary_10_2166_wst_2021_286 crossref_primary_10_1016_j_envres_2024_120398 crossref_primary_10_1016_j_chemosphere_2018_06_007 crossref_primary_10_1016_j_recm_2022_09_002 crossref_primary_10_1021_acssuschemeng_0c01151 crossref_primary_10_1016_j_cej_2020_127545 crossref_primary_10_3390_catal13020401 crossref_primary_10_1016_j_cej_2022_137252 crossref_primary_10_1088_2053_1591_ab4060 crossref_primary_10_3390_catal12080858 crossref_primary_10_1002_app_44875 crossref_primary_10_1016_j_colsurfa_2021_126439 crossref_primary_10_1016_j_jhazmat_2020_124629 crossref_primary_10_1016_j_cej_2024_157403 crossref_primary_10_1016_j_apcatb_2019_117830 crossref_primary_10_1080_09593330_2021_1921052 crossref_primary_10_1016_j_chemosphere_2023_140557 crossref_primary_10_1016_j_jhazmat_2021_127033 crossref_primary_10_1080_08940886_2020_1784693 crossref_primary_10_1016_j_jphotochem_2019_112343 crossref_primary_10_1016_j_apsusc_2021_151305 crossref_primary_10_1016_j_jclepro_2021_130220 crossref_primary_10_2139_ssrn_4143052 crossref_primary_10_1039_C9TA00255C crossref_primary_10_1016_j_psep_2019_03_028 crossref_primary_10_1016_j_jece_2023_111067 crossref_primary_10_1016_j_seppur_2017_05_005 crossref_primary_10_1039_C8NJ00316E crossref_primary_10_1021_acs_est_7b06545 crossref_primary_10_1098_rsos_180371 crossref_primary_10_1039_C8EN01365A crossref_primary_10_1039_D3NJ05590F crossref_primary_10_1016_j_colsurfa_2024_134684 crossref_primary_10_1039_D0CS01032D crossref_primary_10_1016_j_fmre_2023_07_011 crossref_primary_10_1016_j_colsurfa_2019_124190 crossref_primary_10_1016_j_seppur_2024_128245 crossref_primary_10_1007_s11696_022_02419_2 crossref_primary_10_1007_s10563_022_09363_x crossref_primary_10_1016_j_cej_2022_141086 crossref_primary_10_1016_j_nantod_2023_102050 crossref_primary_10_1016_j_pmatsci_2022_100959 crossref_primary_10_1016_j_apcatb_2019_118250 crossref_primary_10_1016_j_seppur_2022_123026 crossref_primary_10_1021_acs_est_8b03916 crossref_primary_10_1016_j_seppur_2021_118850 crossref_primary_10_1016_j_scitotenv_2021_152791 crossref_primary_10_1016_j_cej_2018_11_165 crossref_primary_10_1016_j_biombioe_2024_107456 crossref_primary_10_1039_D0RA05202G crossref_primary_10_1016_j_jece_2022_107196 crossref_primary_10_3390_nano10040676 crossref_primary_10_1016_j_scib_2020_02_015 crossref_primary_10_1016_j_apcatb_2020_119039 crossref_primary_10_1021_acs_est_7b05563 crossref_primary_10_1039_C7TA06459D crossref_primary_10_1016_j_envres_2021_110785 crossref_primary_10_1016_S1872_2067_20_63529_X crossref_primary_10_1016_j_seppur_2017_05_008 crossref_primary_10_1016_j_jwpe_2023_104080 crossref_primary_10_1016_j_jhazmat_2020_124082 crossref_primary_10_1007_s41101_024_00323_2 crossref_primary_10_1021_acs_inorgchem_9b03042 crossref_primary_10_1007_s10562_022_04198_7 crossref_primary_10_1016_j_jhazmat_2020_122472 crossref_primary_10_1016_j_cej_2022_136074 crossref_primary_10_1021_acsami_0c11268 crossref_primary_10_1021_acssuschemeng_8b00279 crossref_primary_10_1038_s41598_020_57823_z crossref_primary_10_1016_j_jece_2023_109526 crossref_primary_10_1021_acsami_9b00195 crossref_primary_10_1016_j_jwpe_2022_102849 crossref_primary_10_1016_j_jallcom_2021_159339 crossref_primary_10_1016_j_jcis_2021_05_124 crossref_primary_10_1016_j_envres_2020_109832 crossref_primary_10_1016_j_cej_2019_122600 crossref_primary_10_1039_D4TA03613A crossref_primary_10_1007_s11356_018_3323_1 crossref_primary_10_1002_adma_202403965 crossref_primary_10_1039_D2RA03483B crossref_primary_10_1016_j_rineng_2024_103109 crossref_primary_10_1016_j_seppur_2021_119760 crossref_primary_10_1016_j_cej_2020_126376 crossref_primary_10_1016_j_jcat_2017_02_005 crossref_primary_10_1016_j_seppur_2022_121420 crossref_primary_10_1016_j_jhazmat_2019_121759 crossref_primary_10_3390_catal13010088 crossref_primary_10_1016_j_clet_2021_100090 crossref_primary_10_1039_D0RA00993H crossref_primary_10_1039_D3CE00547J crossref_primary_10_1016_j_jssc_2020_121563 crossref_primary_10_1039_C7RA12615H crossref_primary_10_1039_D2TA00750A crossref_primary_10_1016_j_elecom_2019_05_012 crossref_primary_10_1016_j_envres_2021_111535 crossref_primary_10_1016_j_chemosphere_2021_133039 crossref_primary_10_1016_j_jhazmat_2019_120782 crossref_primary_10_1016_j_chemosphere_2023_140919 crossref_primary_10_1016_j_jclepro_2022_133277 crossref_primary_10_1016_j_scitotenv_2021_151893 crossref_primary_10_1016_j_cej_2023_146413 crossref_primary_10_1016_j_apcatb_2024_124262 crossref_primary_10_1016_j_cej_2023_145206 crossref_primary_10_1016_j_matchemphys_2023_127692 crossref_primary_10_1039_D1NJ01973B crossref_primary_10_1016_j_watres_2020_116200 crossref_primary_10_1002_slct_201801840 crossref_primary_10_1016_j_susmat_2024_e01080 crossref_primary_10_1016_j_jenvman_2022_114856 crossref_primary_10_1016_j_jwpe_2022_102628 crossref_primary_10_1016_j_jenvman_2025_124871 crossref_primary_10_1007_s11696_022_02113_3 crossref_primary_10_1016_j_jiec_2023_06_020 crossref_primary_10_1039_D2DT01748B crossref_primary_10_1016_j_cej_2023_145681 crossref_primary_10_1016_j_chemosphere_2022_133780 crossref_primary_10_1016_j_apt_2021_02_025 crossref_primary_10_1080_09593330_2019_1665110 crossref_primary_10_1016_j_efmat_2024_10_001 crossref_primary_10_1016_j_chemosphere_2019_124612 crossref_primary_10_1016_j_apcatb_2020_118785 crossref_primary_10_1039_D1DT02367E crossref_primary_10_1016_j_apsusc_2019_05_288 crossref_primary_10_1016_j_cej_2022_138606 crossref_primary_10_1016_j_apsusc_2024_161142 crossref_primary_10_1016_j_scitotenv_2018_12_183 crossref_primary_10_1039_C8CY01517A crossref_primary_10_1016_j_jece_2023_111708 crossref_primary_10_1016_j_jwpe_2022_102757 crossref_primary_10_5004_dwt_2019_23503 crossref_primary_10_1016_j_apcatb_2024_124255 crossref_primary_10_1016_j_colcom_2021_100552 crossref_primary_10_1039_D1EN00426C crossref_primary_10_1016_j_matlet_2022_133045 crossref_primary_10_18178_ijesd_2019_10_10_1197 crossref_primary_10_1016_j_cej_2020_126395 crossref_primary_10_1007_s11356_022_19815_6 crossref_primary_10_1016_j_scitotenv_2017_08_187 crossref_primary_10_1007_s42864_023_00252_y crossref_primary_10_1016_j_jwpe_2024_106615 crossref_primary_10_1016_j_colsurfa_2021_126721 crossref_primary_10_1039_C8CY02449A crossref_primary_10_1016_j_jallcom_2020_155848 crossref_primary_10_1021_acs_est_7b03412 crossref_primary_10_1016_j_jhazmat_2022_128818 crossref_primary_10_1016_j_jtice_2019_03_009 crossref_primary_10_1016_j_scitotenv_2019_04_171 crossref_primary_10_1016_j_cej_2022_137407 crossref_primary_10_3390_molecules28093865 crossref_primary_10_1016_j_apcatb_2018_05_074 crossref_primary_10_1016_j_apcatb_2018_12_029 crossref_primary_10_1016_j_jphotochem_2020_112999 crossref_primary_10_1016_j_jclepro_2023_136731 crossref_primary_10_3389_fchem_2022_982818 crossref_primary_10_2139_ssrn_4134855 crossref_primary_10_1016_j_jece_2024_112291 crossref_primary_10_1007_s11356_022_22838_8 crossref_primary_10_1002_slct_202001931 crossref_primary_10_1039_D3EN00108C crossref_primary_10_1016_j_chemosphere_2021_130911 crossref_primary_10_1039_C7RA04312K crossref_primary_10_3389_fenvc_2020_00008 crossref_primary_10_1016_j_cattod_2020_07_026 crossref_primary_10_1016_j_electacta_2017_08_060 crossref_primary_10_1007_s12274_024_6973_y crossref_primary_10_1016_j_watres_2024_121889 crossref_primary_10_1016_j_jclepro_2018_03_134 crossref_primary_10_1016_j_jhazmat_2018_04_056 crossref_primary_10_1016_j_jhazmat_2018_04_058 crossref_primary_10_1016_j_apsusc_2020_148362 crossref_primary_10_1002_adfm_202304468 crossref_primary_10_3390_nano11112853 crossref_primary_10_1007_s13762_020_03121_0 crossref_primary_10_1016_j_apcatb_2022_121721 crossref_primary_10_1016_j_scenv_2024_100141 crossref_primary_10_1016_j_jhazmat_2021_126579 crossref_primary_10_1007_s11356_020_08148_x crossref_primary_10_1016_j_envres_2024_120576 crossref_primary_10_1016_j_scitotenv_2021_145850 crossref_primary_10_1016_j_jhazmat_2018_08_084 crossref_primary_10_1016_j_jwpe_2023_103601 crossref_primary_10_1016_j_jwpe_2025_107444 crossref_primary_10_1021_acs_est_0c07681 crossref_primary_10_1021_acs_inorgchem_3c00890 crossref_primary_10_2139_ssrn_3991468 crossref_primary_10_1016_j_catcom_2017_09_029 crossref_primary_10_1016_j_jhazmat_2019_121060 crossref_primary_10_1007_s10971_019_05030_2 crossref_primary_10_1016_j_jhazmat_2019_121182 crossref_primary_10_1002_smll_202202928 crossref_primary_10_1177_15280837211063905 crossref_primary_10_1016_j_carbon_2018_06_028 crossref_primary_10_1016_j_seppur_2019_04_088 crossref_primary_10_1016_j_jece_2020_104219 crossref_primary_10_1016_j_jiec_2023_12_052 crossref_primary_10_1016_j_seppur_2022_122215 crossref_primary_10_1016_j_apsusc_2023_157359 crossref_primary_10_1016_j_cej_2021_128435 crossref_primary_10_1016_j_jcis_2016_11_066 crossref_primary_10_1016_j_apsusc_2022_155310 crossref_primary_10_1021_acs_iecr_7b02566 crossref_primary_10_1016_j_jwpe_2019_100943 crossref_primary_10_1016_j_colsurfa_2020_124948 crossref_primary_10_14356_kona_2025005 crossref_primary_10_1016_j_jes_2023_08_033 crossref_primary_10_1016_S1872_2067_19_63499_6 crossref_primary_10_1021_acs_iecr_0c01613 crossref_primary_10_1039_D0TA04541A crossref_primary_10_1016_j_scitotenv_2018_08_022 crossref_primary_10_1002_anie_202413799 crossref_primary_10_1002_slct_201902846 crossref_primary_10_1016_j_jcis_2020_12_031 crossref_primary_10_1016_j_jhazmat_2019_121007 crossref_primary_10_1016_j_apcatb_2019_02_067 crossref_primary_10_1021_acs_iecr_0c04441 crossref_primary_10_1016_j_jcis_2020_05_007 crossref_primary_10_1016_j_optmat_2022_112092 crossref_primary_10_1007_s40097_022_00511_3 crossref_primary_10_1016_j_seppur_2023_125593 crossref_primary_10_1002_slct_202200306 crossref_primary_10_1016_j_cej_2022_140296 crossref_primary_10_1016_j_jes_2018_04_024 crossref_primary_10_1016_j_psep_2018_03_034 crossref_primary_10_1039_D1NR00933H crossref_primary_10_3390_catal10030317 crossref_primary_10_1016_j_chemosphere_2024_141354 crossref_primary_10_1039_C8TA05488F crossref_primary_10_1039_D3NJ03270A crossref_primary_10_1016_j_colsurfa_2023_132477 crossref_primary_10_1016_j_cej_2017_12_104 crossref_primary_10_1016_j_mssp_2024_108642 crossref_primary_10_1016_j_cej_2023_141806 crossref_primary_10_1002_asia_202000895 crossref_primary_10_1016_j_apcatb_2019_05_041 crossref_primary_10_1039_C9RA09253F crossref_primary_10_1080_01411594_2021_2004140 crossref_primary_10_1016_j_jcis_2023_04_057 crossref_primary_10_1016_j_chemosphere_2021_131257 crossref_primary_10_1016_j_jwpe_2020_101804 crossref_primary_10_1002_cctc_201801803 crossref_primary_10_1021_acsami_8b12908 crossref_primary_10_1039_D0TA04943C crossref_primary_10_1016_j_scitotenv_2023_169142 crossref_primary_10_1039_D0MA00374C crossref_primary_10_1016_j_jallcom_2019_05_205 crossref_primary_10_1016_j_nanoms_2022_07_001 crossref_primary_10_1021_acsomega_0c05915 crossref_primary_10_1007_s11244_020_01273_4 crossref_primary_10_1016_j_chemosphere_2021_129830 crossref_primary_10_1016_j_apsusc_2020_147655 crossref_primary_10_1016_j_ccr_2022_214874 crossref_primary_10_1016_j_jcis_2021_10_168 crossref_primary_10_1016_j_apcatb_2018_08_025 crossref_primary_10_1016_j_carbon_2019_12_056 crossref_primary_10_1002_ange_202413799 crossref_primary_10_1016_j_colsurfa_2024_133158 crossref_primary_10_1002_chem_201905749 crossref_primary_10_1016_j_seppur_2022_122706 crossref_primary_10_1016_j_apcatb_2019_05_019 crossref_primary_10_1039_D2QI00227B crossref_primary_10_1016_j_cclet_2022_08_006 crossref_primary_10_1007_s11164_024_05475_3 crossref_primary_10_1016_j_jiec_2021_04_007 crossref_primary_10_2139_ssrn_4177582 crossref_primary_10_1007_s11243_024_00613_7 crossref_primary_10_1016_j_cej_2022_139890 crossref_primary_10_1016_j_chemosphere_2019_125780 crossref_primary_10_1016_j_envpol_2024_123825 crossref_primary_10_2139_ssrn_4136268 crossref_primary_10_1016_j_jhazmat_2022_129772 crossref_primary_10_1007_s11164_020_04080_4 crossref_primary_10_1016_j_seppur_2019_116023 crossref_primary_10_1007_s11164_020_04137_4 crossref_primary_10_1016_j_ultsonch_2019_104681 |
Cites_doi | 10.1021/acssuschemeng.5b01139 10.1038/nmat2317 10.1016/j.microc.2007.09.002 10.1007/s11356-012-1385-z 10.1016/j.molcata.2004.10.041 10.1002/aenm.201301735 10.1016/j.watres.2015.12.025 10.1021/acs.jpcc.5b09469 10.1016/j.apcatb.2006.10.009 10.1039/C4NR03008G 10.1021/cs500673k 10.1016/j.chemosphere.2004.09.091 10.1021/am502925j 10.1021/la400003h 10.1021/es011109p 10.1016/j.apcatb.2014.09.071 10.1039/b500194c 10.1002/adma.201204453 10.1016/S0891-5849(96)00614-4 10.1080/10643380500326564 10.1039/c1jm12620b 10.1016/j.jallcom.2014.01.148 10.1021/es903390g 10.1039/c2jm00097k 10.1016/j.jhazmat.2011.07.046 10.1021/acs.est.5b00445 10.1021/ja511759u 10.1016/j.carbon.2013.07.052 10.1021/es970648k 10.1126/science.1069297 10.1021/ja903923s 10.1039/C4RA10207J 10.1021/es102401d 10.1016/j.biomaterials.2008.12.042 10.1080/10643389.2010.507698 10.1002/adma.200802627 10.1021/jp0267149 10.1016/j.molcata.2009.07.001 10.1021/es903739f 10.1016/j.cej.2014.08.011 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apcatb.2016.08.048 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
EndPage | 240 |
ExternalDocumentID | 10_1016_j_apcatb_2016_08_048 S0926337316306567 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SES SEW SPC SPD SSG SSZ T5K VH1 WUQ XFK XPP ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c409t-ab45b23f97c8a450bd217cfec67b5204a89a1619b9f326a4f26ce6f035ca7d403 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Tue Jul 01 03:10:35 EDT 2025 Thu Apr 24 23:13:19 EDT 2025 Sat Mar 02 16:00:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fenton-like reaction Organic pollutant Catalyst Graphitic carbon nitride |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-ab45b23f97c8a450bd217cfec67b5204a89a1619b9f326a4f26ce6f035ca7d403 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_apcatb_2016_08_048 crossref_citationtrail_10_1016_j_apcatb_2016_08_048 elsevier_sciencedirect_doi_10_1016_j_apcatb_2016_08_048 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-01 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yang, Zhang, Xie, Liao, Zhang, Yu, Wu, Liu, Li, Guo (bib0170) 2015; 5 Nieto-Juarez, Pierzchła, Sienkiewicz, Kohn (bib0175) 2010; 44 Lyu, Zhang, Wang, Nie, Hu (bib0110) 2015; 49 Zhao, Sun, Dong (bib0055) 2015; 7 Wen, Ma, Chen, Shen, Li, Liu (bib0120) 2015; 259 Matuszak, Reszka, Chignell (bib0165) 1997; 23 Li, Liu, Xu, Wen, Ma, Wu (bib0145) 2015; 165 Ensing, Buda, Baerends (bib0040) 2003; 107 Singh, Bae, Yu, Fe (bib0155) 2015; 137 Lee, Sedlak (bib0045) 2009; 311 De Oliveira (bib0185) 2008; 88 Agboola, Ozoemena, Nyokong (bib0050) 2005; 227 Luo, Zhu, Wang, Tang, Cao, She (bib0025) 2010; 44 Lin, Gurol (bib0205) 1998; 32 Chen, Zhang, Fu, Antonietti, Wang (bib0075) 2009; 131 Kwan, Voelker (bib0210) 2002; 36 Li, Kong, Lu (bib0105) 2015; 120 Liu, Xiao, Feng, Zhou, Chen, Liu, Chen, Wu, Xu, Oh (bib0195) 2013; 64 Zubir, Yacou, Motuzas, Zhang, da Costa (bib0200) 2014; 4 Guo, Li, Zhang, Li, Wang (bib0125) 2009; 30 Pang, Jiang, Ma (bib0180) 2010; 45 Shen, Wen, Shen, Wu, Liu (bib0030) 2011; 193 Liu, Ma, Shen, Wen, Liu (bib0150) 2016; 90 Liu, Zhang, Wang, Dawson, Chen (bib0130) 2011; 21 Mrowetz, Selli (bib0160) 2005; 7 Georgi, Schierz, Trommler, Horwitz, Collins, Kopinke (bib0190) 2007; 72 Hsueh, Huang, Wang, Chen (bib0015) 2005; 58 Zhu, Xiao, Li, Carabineiro (bib0065) 2014; 6 Pignatello, Oliveros, MacKay (bib0005) 2006; 36 Wang, Yang, Wang, Chen, Zhou, Sun (bib0090) 2014; 4 Wang, Xu (bib0010) 2012; 42 Serov, Artyushkova, Atanassov (bib0135) 2014; 4 Zhang, Zhang, Zhang, Wang (bib0080) 2012; 22 Liu, Zhang (bib0100) 2013; 29 Zhang, Pan, Chai, Liang, Dong, Zhang, Qiu (bib0085) 2013; 3 Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (bib0060) 2009; 8 Wang, Chen, Thomas, Fu, Antonietti (bib0095) 2009; 21 Yu, Shen, Huang, Fe (bib0140) 2014; 595 Gupta, Stadler, Noser, Ghosh, Steinhoff, Lenoir, Horwitz, Schramm, Collins (bib0035) 2002; 296 Yang, Gong, Zhang, Zhan, Ma, Fang, Vajtai, Wang, Ajayan (bib0115) 2013; 25 Nidheesh, Gandhimathi, Ramesh (bib0020) 2013; 20 Shi, Liang, Wang, Liu, Chen, Sun, Zhang, Sun (bib0070) 2015; 3 Nidheesh (10.1016/j.apcatb.2016.08.048_bib0020) 2013; 20 Georgi (10.1016/j.apcatb.2016.08.048_bib0190) 2007; 72 Liu (10.1016/j.apcatb.2016.08.048_bib0150) 2016; 90 Liu (10.1016/j.apcatb.2016.08.048_bib0100) 2013; 29 Li (10.1016/j.apcatb.2016.08.048_bib0145) 2015; 165 Wen (10.1016/j.apcatb.2016.08.048_bib0120) 2015; 259 Matuszak (10.1016/j.apcatb.2016.08.048_bib0165) 1997; 23 Chen (10.1016/j.apcatb.2016.08.048_bib0075) 2009; 131 Shen (10.1016/j.apcatb.2016.08.048_bib0030) 2011; 193 Serov (10.1016/j.apcatb.2016.08.048_bib0135) 2014; 4 Zhu (10.1016/j.apcatb.2016.08.048_bib0065) 2014; 6 Pignatello (10.1016/j.apcatb.2016.08.048_bib0005) 2006; 36 Zhao (10.1016/j.apcatb.2016.08.048_bib0055) 2015; 7 De Oliveira (10.1016/j.apcatb.2016.08.048_bib0185) 2008; 88 Pang (10.1016/j.apcatb.2016.08.048_bib0180) 2010; 45 Lee (10.1016/j.apcatb.2016.08.048_bib0045) 2009; 311 Wang (10.1016/j.apcatb.2016.08.048_bib0090) 2014; 4 Yang (10.1016/j.apcatb.2016.08.048_bib0170) 2015; 5 Shi (10.1016/j.apcatb.2016.08.048_bib0070) 2015; 3 Zhang (10.1016/j.apcatb.2016.08.048_bib0080) 2012; 22 Luo (10.1016/j.apcatb.2016.08.048_bib0025) 2010; 44 Wang (10.1016/j.apcatb.2016.08.048_bib0095) 2009; 21 Liu (10.1016/j.apcatb.2016.08.048_bib0195) 2013; 64 Liu (10.1016/j.apcatb.2016.08.048_bib0130) 2011; 21 Kwan (10.1016/j.apcatb.2016.08.048_bib0210) 2002; 36 Wang (10.1016/j.apcatb.2016.08.048_bib0060) 2009; 8 Lyu (10.1016/j.apcatb.2016.08.048_bib0110) 2015; 49 Guo (10.1016/j.apcatb.2016.08.048_bib0125) 2009; 30 Singh (10.1016/j.apcatb.2016.08.048_bib0155) 2015; 137 Yu (10.1016/j.apcatb.2016.08.048_bib0140) 2014; 595 Mrowetz (10.1016/j.apcatb.2016.08.048_bib0160) 2005; 7 Nieto-Juarez (10.1016/j.apcatb.2016.08.048_bib0175) 2010; 44 Lin (10.1016/j.apcatb.2016.08.048_bib0205) 1998; 32 Zhang (10.1016/j.apcatb.2016.08.048_bib0085) 2013; 3 Li (10.1016/j.apcatb.2016.08.048_bib0105) 2015; 120 Hsueh (10.1016/j.apcatb.2016.08.048_bib0015) 2005; 58 Yang (10.1016/j.apcatb.2016.08.048_bib0115) 2013; 25 Gupta (10.1016/j.apcatb.2016.08.048_bib0035) 2002; 296 Zubir (10.1016/j.apcatb.2016.08.048_bib0200) 2014; 4 Wang (10.1016/j.apcatb.2016.08.048_bib0010) 2012; 42 Agboola (10.1016/j.apcatb.2016.08.048_bib0050) 2005; 227 Ensing (10.1016/j.apcatb.2016.08.048_bib0040) 2003; 107 |
References_xml | – volume: 44 start-page: 3351 year: 2010 end-page: 3356 ident: bib0175 article-title: Inactivation of MS2 coliphage in Fenton and Fenton-like systems: role of transition metals, hydrogen peroxide and sunlight publication-title: Environ. Sci. Technol. – volume: 4 start-page: 3928 year: 2014 end-page: 3936 ident: bib0090 article-title: Pyrolyzed Fe-N-C composite as an efficient non-precious metal catalyst for oxygen reduction reaction in acidic medium publication-title: ACS Catal. – volume: 49 start-page: 8639 year: 2015 end-page: 8647 ident: bib0110 article-title: Enhanced fenton catalytic efficiency of γ-Cu-Al publication-title: Environ. Sci. Technol. – volume: 30 start-page: 1881 year: 2009 end-page: 1889 ident: bib0125 article-title: Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery publication-title: Biomaterials – volume: 22 start-page: 8083 year: 2012 end-page: 8091 ident: bib0080 article-title: Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts publication-title: J. Mater. Chem. – volume: 259 start-page: 372 year: 2015 end-page: 380 ident: bib0120 article-title: Carbonaceous sulfur-containing chitosan-Fe(III): a novel adsorbent for efficient removal of copper(II) from water publication-title: Chem. Eng. J. – volume: 595 start-page: 185 year: 2014 end-page: 191 ident: bib0140 article-title: C catalyst modified graphene sponge as a cathode material for lithium-oxygen battery publication-title: J. Alloy Compd. – volume: 3 start-page: 3412 year: 2015 end-page: 3419 ident: bib0070 article-title: Higher yield urea-derived polymeric graphitic carbon nitride with mesoporous structure and superior visible-light-responsive activity publication-title: ACS Sustain. Chem. Eng. – volume: 120 start-page: 56 year: 2015 end-page: 63 ident: bib0105 article-title: Visible photocatalytic water splitting and photocatalytic two-electron oxygen formation over Cu-and Fe-doped g-C publication-title: J. Phys. Chem. C – volume: 7 start-page: 1100 year: 2005 end-page: 1102 ident: bib0160 article-title: Enhanced photocatalytic formation of hydroxyl radicals on fluorinated TiO publication-title: Phys. Chem. Chem. Phys. – volume: 165 start-page: 79 year: 2015 end-page: 86 ident: bib0145 article-title: Highly dispersed Pd/PdO/Fe publication-title: Appl. Catal. B-Environ. – volume: 5 start-page: 5458 year: 2015 end-page: 5463 ident: bib0170 article-title: Fe publication-title: RSC Adv. – volume: 137 start-page: 3165 year: 2015 end-page: 3168 ident: bib0155 article-title: A new class of electroactive catalyst for oxygen reduction reaction publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 76 year: 2009 end-page: 80 ident: bib0060 article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light publication-title: Nat. Mater. – volume: 131 start-page: 11658 year: 2009 end-page: 11659 ident: bib0075 article-title: Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 1786 year: 2010 end-page: 1791 ident: bib0025 article-title: Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst publication-title: Environ. Sci. Technol. – volume: 4 year: 2014 ident: bib0135 article-title: Fe-N-C oxygen reduction fuel cell catalyst derived from carbendazim: synthesis, structure, and reactivity publication-title: Adv. Energy Mater. – volume: 45 start-page: 307 year: 2010 end-page: 312 ident: bib0180 article-title: Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction publication-title: Environ. Sci. Technol. – volume: 36 start-page: 1 year: 2006 end-page: 84 ident: bib0005 article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 107 start-page: 5722 year: 2003 end-page: 5731 ident: bib0040 article-title: Fenton-like chemistry in water: oxidation catalysis by Fe(III) and H publication-title: J. Phys. Chem. A – volume: 7 start-page: 15 year: 2015 end-page: 37 ident: bib0055 article-title: Graphitic carbon nitride based nanocomposites: a review publication-title: Nanoscale – volume: 88 start-page: 32 year: 2008 end-page: 37 ident: bib0185 article-title: Determination of pK a of dyes by electrical impedance spectroscopy publication-title: Microchem. J. – volume: 227 start-page: 209 year: 2005 end-page: 216 ident: bib0050 article-title: Hydrogen peroxide oxidation of 2-chlorophenol and 2,4,5-trichlorophenol catalyzed by monomeric and aggregated cobalt tetrasulfophthalocyanine publication-title: J. Mol. Catal. A: Chem. – volume: 21 start-page: 14398 year: 2011 end-page: 14401 ident: bib0130 article-title: Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity publication-title: J. Mater. Chem. – volume: 90 start-page: 24 year: 2016 end-page: 33 ident: bib0150 article-title: A pH-responsive and magnetically separable dynamic system for efficient removal of highly dilute antibiotics in water publication-title: Water Res. – volume: 311 start-page: 1 year: 2009 end-page: 6 ident: bib0045 article-title: A novel homogeneous Fenton-like system with Fe(III)–phosphotungstate for oxidation of organic compounds at neutral pH values publication-title: J. Mol. Catal. A Chem. – volume: 20 start-page: 2099 year: 2013 end-page: 2132 ident: bib0020 article-title: Degradation of dyes from aqueous solution by Fenton processes: a review publication-title: Environ. Sci. Pollut. Res. – volume: 29 start-page: 3821 year: 2013 end-page: 3828 ident: bib0100 article-title: Graphene supported Co-g-C publication-title: Langmuir – volume: 193 start-page: 209 year: 2011 end-page: 215 ident: bib0030 article-title: Facile, green encapsulation of cobalt tetrasulfophthalocyanine monomers in mesoporous silicas for the degradative hydrogen peroxide oxidation of azo dyes publication-title: J. Hazard. Mater. – volume: 3 year: 2013 ident: bib0085 article-title: Synthesis and luminescence mechanism of multicolor-emitting g-C publication-title: Sci. Rep. Uk – volume: 296 start-page: 326 year: 2002 end-page: 328 ident: bib0035 article-title: Rapid total destruction of chlorophenols by activated hydrogen peroxide publication-title: Science – volume: 6 start-page: 16449 year: 2014 end-page: 16465 ident: bib0065 article-title: Graphitic carbon nitride: synthesis, properties, and applications in catalysis publication-title: ACS Appl. Mater. Interfaces – volume: 64 start-page: 197 year: 2013 end-page: 206 ident: bib0195 article-title: Graphene oxide enhances the Fenton-like photocatalytic activity of nickel ferrite for degradation of dyes under visible light irradiation publication-title: Carbon – volume: 58 start-page: 1409 year: 2005 end-page: 1414 ident: bib0015 article-title: Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system publication-title: Chemosphere – volume: 23 start-page: 367 year: 1997 end-page: 372 ident: bib0165 article-title: Reaction of melatonin and related indoles with hydroxyl radicals: EPR and spin trapping investigations publication-title: Free Radic. Biol. Med. – volume: 42 start-page: 251 year: 2012 end-page: 325 ident: bib0010 article-title: Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 36 start-page: 1467 year: 2002 end-page: 1476 ident: bib0210 article-title: Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite publication-title: Environ. Sci. Technol. – volume: 21 start-page: 1609 year: 2009 end-page: 1612 ident: bib0095 article-title: Metal‐containing carbon nitride compounds: a new functional organic–metal hybrid material publication-title: Adv. Mater. – volume: 4 year: 2014 ident: bib0200 article-title: Structural and functional investigation of graphene oxide–Fe publication-title: Sci. Rep. Uk – volume: 32 start-page: 1417 year: 1998 end-page: 1423 ident: bib0205 article-title: Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications publication-title: Environ. Sci. Technol. – volume: 72 start-page: 26 year: 2007 end-page: 36 ident: bib0190 article-title: Humic acid modified Fenton reagent for enhancement of the working pH range publication-title: Appl. Catal. B-Environ. – volume: 25 start-page: 2452 year: 2013 end-page: 2456 ident: bib0115 article-title: Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light publication-title: Adv. Mater. – volume: 3 start-page: 3412 year: 2015 ident: 10.1016/j.apcatb.2016.08.048_bib0070 article-title: Higher yield urea-derived polymeric graphitic carbon nitride with mesoporous structure and superior visible-light-responsive activity publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b01139 – volume: 8 start-page: 76 year: 2009 ident: 10.1016/j.apcatb.2016.08.048_bib0060 article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light publication-title: Nat. Mater. doi: 10.1038/nmat2317 – volume: 88 start-page: 32 year: 2008 ident: 10.1016/j.apcatb.2016.08.048_bib0185 article-title: Determination of pK a of dyes by electrical impedance spectroscopy publication-title: Microchem. J. doi: 10.1016/j.microc.2007.09.002 – volume: 20 start-page: 2099 year: 2013 ident: 10.1016/j.apcatb.2016.08.048_bib0020 article-title: Degradation of dyes from aqueous solution by Fenton processes: a review publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-012-1385-z – volume: 227 start-page: 209 year: 2005 ident: 10.1016/j.apcatb.2016.08.048_bib0050 article-title: Hydrogen peroxide oxidation of 2-chlorophenol and 2,4,5-trichlorophenol catalyzed by monomeric and aggregated cobalt tetrasulfophthalocyanine publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2004.10.041 – volume: 4 year: 2014 ident: 10.1016/j.apcatb.2016.08.048_bib0135 article-title: Fe-N-C oxygen reduction fuel cell catalyst derived from carbendazim: synthesis, structure, and reactivity publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301735 – volume: 90 start-page: 24 year: 2016 ident: 10.1016/j.apcatb.2016.08.048_bib0150 article-title: A pH-responsive and magnetically separable dynamic system for efficient removal of highly dilute antibiotics in water publication-title: Water Res. doi: 10.1016/j.watres.2015.12.025 – volume: 120 start-page: 56 year: 2015 ident: 10.1016/j.apcatb.2016.08.048_bib0105 article-title: Visible photocatalytic water splitting and photocatalytic two-electron oxygen formation over Cu-and Fe-doped g-C3N4 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b09469 – volume: 72 start-page: 26 year: 2007 ident: 10.1016/j.apcatb.2016.08.048_bib0190 article-title: Humic acid modified Fenton reagent for enhancement of the working pH range publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2006.10.009 – volume: 7 start-page: 15 year: 2015 ident: 10.1016/j.apcatb.2016.08.048_bib0055 article-title: Graphitic carbon nitride based nanocomposites: a review publication-title: Nanoscale doi: 10.1039/C4NR03008G – volume: 4 start-page: 3928 year: 2014 ident: 10.1016/j.apcatb.2016.08.048_bib0090 article-title: Pyrolyzed Fe-N-C composite as an efficient non-precious metal catalyst for oxygen reduction reaction in acidic medium publication-title: ACS Catal. doi: 10.1021/cs500673k – volume: 58 start-page: 1409 year: 2005 ident: 10.1016/j.apcatb.2016.08.048_bib0015 article-title: Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.09.091 – volume: 6 start-page: 16449 year: 2014 ident: 10.1016/j.apcatb.2016.08.048_bib0065 article-title: Graphitic carbon nitride: synthesis, properties, and applications in catalysis publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am502925j – volume: 29 start-page: 3821 year: 2013 ident: 10.1016/j.apcatb.2016.08.048_bib0100 article-title: Graphene supported Co-g-C3N4 as a novel metal–macrocyclic electrocatalyst for the oxygen reduction reaction in fuel cells publication-title: Langmuir doi: 10.1021/la400003h – volume: 36 start-page: 1467 year: 2002 ident: 10.1016/j.apcatb.2016.08.048_bib0210 article-title: Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite publication-title: Environ. Sci. Technol. doi: 10.1021/es011109p – volume: 165 start-page: 79 year: 2015 ident: 10.1016/j.apcatb.2016.08.048_bib0145 article-title: Highly dispersed Pd/PdO/Fe2O3 nanoparticles in SBA-15 for Fenton-like processes: confinement and synergistic effects publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2014.09.071 – volume: 7 start-page: 1100 year: 2005 ident: 10.1016/j.apcatb.2016.08.048_bib0160 article-title: Enhanced photocatalytic formation of hydroxyl radicals on fluorinated TiO2 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b500194c – volume: 3 year: 2013 ident: 10.1016/j.apcatb.2016.08.048_bib0085 article-title: Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine publication-title: Sci. Rep. Uk – volume: 25 start-page: 2452 year: 2013 ident: 10.1016/j.apcatb.2016.08.048_bib0115 article-title: Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light publication-title: Adv. Mater. doi: 10.1002/adma.201204453 – volume: 23 start-page: 367 year: 1997 ident: 10.1016/j.apcatb.2016.08.048_bib0165 article-title: Reaction of melatonin and related indoles with hydroxyl radicals: EPR and spin trapping investigations publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(96)00614-4 – volume: 36 start-page: 1 year: 2006 ident: 10.1016/j.apcatb.2016.08.048_bib0005 article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380500326564 – volume: 21 start-page: 14398 year: 2011 ident: 10.1016/j.apcatb.2016.08.048_bib0130 article-title: Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity publication-title: J. Mater. Chem. doi: 10.1039/c1jm12620b – volume: 595 start-page: 185 year: 2014 ident: 10.1016/j.apcatb.2016.08.048_bib0140 article-title: C catalyst modified graphene sponge as a cathode material for lithium-oxygen battery publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2014.01.148 – volume: 44 start-page: 1786 year: 2010 ident: 10.1016/j.apcatb.2016.08.048_bib0025 article-title: Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst publication-title: Environ. Sci. Technol. doi: 10.1021/es903390g – volume: 22 start-page: 8083 year: 2012 ident: 10.1016/j.apcatb.2016.08.048_bib0080 article-title: Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts publication-title: J. Mater. Chem. doi: 10.1039/c2jm00097k – volume: 4 year: 2014 ident: 10.1016/j.apcatb.2016.08.048_bib0200 article-title: Structural and functional investigation of graphene oxide–Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction publication-title: Sci. Rep. Uk – volume: 193 start-page: 209 year: 2011 ident: 10.1016/j.apcatb.2016.08.048_bib0030 article-title: Facile, green encapsulation of cobalt tetrasulfophthalocyanine monomers in mesoporous silicas for the degradative hydrogen peroxide oxidation of azo dyes publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.07.046 – volume: 49 start-page: 8639 year: 2015 ident: 10.1016/j.apcatb.2016.08.048_bib0110 article-title: Enhanced fenton catalytic efficiency of γ-Cu-Al2O3 by σ-Cu2+-ligand complexes from aromatic pollutant degradation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00445 – volume: 137 start-page: 3165 year: 2015 ident: 10.1016/j.apcatb.2016.08.048_bib0155 article-title: A new class of electroactive catalyst for oxygen reduction reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511759u – volume: 64 start-page: 197 year: 2013 ident: 10.1016/j.apcatb.2016.08.048_bib0195 article-title: Graphene oxide enhances the Fenton-like photocatalytic activity of nickel ferrite for degradation of dyes under visible light irradiation publication-title: Carbon doi: 10.1016/j.carbon.2013.07.052 – volume: 32 start-page: 1417 year: 1998 ident: 10.1016/j.apcatb.2016.08.048_bib0205 article-title: Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications publication-title: Environ. Sci. Technol. doi: 10.1021/es970648k – volume: 296 start-page: 326 year: 2002 ident: 10.1016/j.apcatb.2016.08.048_bib0035 article-title: Rapid total destruction of chlorophenols by activated hydrogen peroxide publication-title: Science doi: 10.1126/science.1069297 – volume: 131 start-page: 11658 year: 2009 ident: 10.1016/j.apcatb.2016.08.048_bib0075 article-title: Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light publication-title: J. Am. Chem. Soc. doi: 10.1021/ja903923s – volume: 5 start-page: 5458 year: 2015 ident: 10.1016/j.apcatb.2016.08.048_bib0170 article-title: Fe3O4@SiO2 nanoparticles as a high-performance Fenton-like catalyst in a neutral environment publication-title: RSC Adv. doi: 10.1039/C4RA10207J – volume: 45 start-page: 307 year: 2010 ident: 10.1016/j.apcatb.2016.08.048_bib0180 article-title: Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction publication-title: Environ. Sci. Technol. doi: 10.1021/es102401d – volume: 30 start-page: 1881 year: 2009 ident: 10.1016/j.apcatb.2016.08.048_bib0125 article-title: Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.12.042 – volume: 42 start-page: 251 year: 2012 ident: 10.1016/j.apcatb.2016.08.048_bib0010 article-title: Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2010.507698 – volume: 21 start-page: 1609 year: 2009 ident: 10.1016/j.apcatb.2016.08.048_bib0095 article-title: Metal‐containing carbon nitride compounds: a new functional organic–metal hybrid material publication-title: Adv. Mater. doi: 10.1002/adma.200802627 – volume: 107 start-page: 5722 year: 2003 ident: 10.1016/j.apcatb.2016.08.048_bib0040 article-title: Fenton-like chemistry in water: oxidation catalysis by Fe(III) and H2O2 publication-title: J. Phys. Chem. A doi: 10.1021/jp0267149 – volume: 311 start-page: 1 year: 2009 ident: 10.1016/j.apcatb.2016.08.048_bib0045 article-title: A novel homogeneous Fenton-like system with Fe(III)–phosphotungstate for oxidation of organic compounds at neutral pH values publication-title: J. Mol. Catal. A Chem. doi: 10.1016/j.molcata.2009.07.001 – volume: 44 start-page: 3351 year: 2010 ident: 10.1016/j.apcatb.2016.08.048_bib0175 article-title: Inactivation of MS2 coliphage in Fenton and Fenton-like systems: role of transition metals, hydrogen peroxide and sunlight publication-title: Environ. Sci. Technol. doi: 10.1021/es903739f – volume: 259 start-page: 372 year: 2015 ident: 10.1016/j.apcatb.2016.08.048_bib0120 article-title: Carbonaceous sulfur-containing chitosan-Fe(III): a novel adsorbent for efficient removal of copper(II) from water publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.08.011 |
SSID | ssj0002328 |
Score | 2.620318 |
Snippet | [Display omitted]
•Modified g-C3N4 is used as a Fenton-like catalyst in a wide pH range.•The prepared Fe-g-C3N4/GMC catalyst is adaptable to different organic... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 232 |
SubjectTerms | Catalyst Fenton-like reaction Graphitic carbon nitride Organic pollutant |
Title | Fe-g-C3N4/graphitized mesoporous carbon composite as an effective Fenton-like catalyst in a wide pH range |
URI | https://dx.doi.org/10.1016/j.apcatb.2016.08.048 |
Volume | 201 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5CPEQPYlaDURP64LXd2X7uHMOSZRNxLyaQ21D9GBmNs8vuiOghvz3V80giSASvQ9UwdNXUo_mqPoD3IlKWMxJ5Sd7AlbQZx5CVXFg9cahLKTBdDXxamsWlOr_SVzswG2ZhEqyyj_1dTG-jdf9k3J_meF1V489ZLoyUiXkpsZ-bNFGulE1e_uHmHuZBFUMbjUmYJ-lhfK7FeOHaY-MSwMu0izwTC9Df0tODlDN_Ac_7WpGddJ-zDzuxHsHebKBoG8GzB9sER3Bwej-0Rmr9X7t9CdU88i98Jpdq3O6nrprqdwzse9yuqPqm1p953LhVzRK-PIG4IsMtw5p1YA-Kh4ycOXENX1ffImtvfH5tG1bVDNnPKkS2XrBNmlJ4BZfz04vZgvcUC9xTY9dwdEo7Icvc-ikqnblALYqndxvrtMgUTnOkmjB3OVnNoCqF8dGUmdQebVCZPIDdelXH18AmGLRywlujMhWpj6PeOg9TjxPtgg3uEORwsoXv948nGozrYgCafS06exTJHkVix1TTQ-B3Wutu_8Y_5O1gtOIPPyooRTyq-ea_Nd_CU5GSfYvlfge7zeZHPKJSpXHHrS8ew5OTs4-L5S0dVujr |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7aFwQGWhouXlA1drs35ujtWqq_S1F1qpt2jsOCjQZle7QQh-fcd5lCIhkLhansjyTOZhfTMfwEcRKMoZibwka-BK2oRjkZRcWD11qEspMD4NXC5Ndq3ObvTNDsyHXpgIq-x9f-fTW2_dr0z625ysq2ryKUmFkTIyL0X2c2OfwG6cTqVHsHt8ep4tHxwyJQ2tQ6b9PAoMHXQtzAvXHhsXMV6mneUZiYD-FKEeRZ3FPjzv00V23J3oBeyEegx784GlbQzPHg0UHMPBya--NRLrf9ztS6gWgX_mc7lUk3ZEddVUP0PB7sJ2RQk4Vf_M48atahYh5hHHFRhuGdasw3uQS2Rkz5Fu-Lb6Glj76PNj27CqZsi-V0Vg64xtYqPCK7henFzNM96zLHBPtV3D0SnthCxT62eodOIKqlI8fdtYp0WicJYipYWpS0lxBlUpjA-mTKT2aAuVyAMY1as6vAY2xUIrJ7w1KlGBSjkqr9Ni5nGqXWELdwhyuNnc9yPIIxPGbT5gzb7knT7yqI88EmSq2SHwB6l1N4LjH_vtoLT8N1PKKUr8VfLovyU_wF52dXmRX5wuz9_AUxFjfwvtfgujZvMtvKPMpXHve8u8Bxwg65w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fe-g-C3N4%2Fgraphitized+mesoporous+carbon+composite+as+an+effective+Fenton-like+catalyst+in+a+wide+pH+range&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Ma%2C+Jianqing&rft.au=Yang%2C+Qunfeng&rft.au=Wen%2C+Yuezhong&rft.au=Liu%2C+Weiping&rft.date=2017-02-01&rft.issn=0926-3373&rft.volume=201&rft.spage=232&rft.epage=240&rft_id=info:doi/10.1016%2Fj.apcatb.2016.08.048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2016_08_048 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |