Employment of Domain Adaptation Techniques in SSVEP-Based Brain-Computer Interfaces

This work addresses the employment of Machine Learning (ML) and Domain Adaptation (DA) in the framework of Brain-Computer Interfaces (BCIs) based on Steady-State Visually Evoked Potentials (SSVEPs). Currently, all the state-of-the-art classification strategies do not consider the high non-stationari...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; pp. 36147 - 36157
Main Authors Apicella, Andrea, Arpaia, Pasquale, Benedetto, Egidio De, Donato, Nicola, Duraccio, Luigi, Giugliano, Salvatore, Prevete, Roberto
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2023.3266306

Cover

Loading…
More Information
Summary:This work addresses the employment of Machine Learning (ML) and Domain Adaptation (DA) in the framework of Brain-Computer Interfaces (BCIs) based on Steady-State Visually Evoked Potentials (SSVEPs). Currently, all the state-of-the-art classification strategies do not consider the high non-stationarity typical of brain signals. This can lead to poor performance, expecially when short-time signals have to be considered to allow real-time human-environment interaction. In this regard, ML and DA techniques can represent a suitable strategy to enhance the performance of SSVEPs classification pipelines. In particular, the employment of a two-step DA technique is proposed: first, the standardization of the data per subject is performed by exploiting a part of unlabeled test data during the training stage; second, a similarity measure between subjects is considered in the selection of the validation sets. The proposal was applied to three classifiers to verify the statistical significance of the improvements over the standard approaches. These classifiers were validated and comparatively tested on a well-known public benchmark dataset. An appropriate validation method was used in order to simulate real-world usage. The experimental results show that the proposed approach significantly improves the classification accuracy of SSVEPs. In fact, up to 62.27 % accuracy was achieved also in the case of short-time signals (i.e., 1.0 s). This represents a further confirmation of the suitability of advanced ML to improve the performance of BCIs for daily-life applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3266306