Beyond 5G Resource Slicing with Mixed-Numerologies for Mission Critical URLLC and eMBB Coexistence

Network slicing has been a significant technological advance in the 5G mobile network allowing delivery of diverse and demanding requirements. The slicing grants the ability to create customized virtual networks from the underlying physical network, while each virtual network can serve a different p...

Full description

Saved in:
Bibliographic Details
Published inIEEE open journal of the Communications Society Vol. 4; p. 1
Main Authors Esmaeily, Ali, Mendis, H. V. Kalpanie, Mahmoodi, Toktam, Kralevska, Katina
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Network slicing has been a significant technological advance in the 5G mobile network allowing delivery of diverse and demanding requirements. The slicing grants the ability to create customized virtual networks from the underlying physical network, while each virtual network can serve a different purpose. One of the main challenges yet is the allocation of resources to different slices, both to best serve different services and to use the resources in the most optimal way. In this paper, we study the radio resource slicing problem for Ultra-Reliable Low Latency Communications (URLLC) and enhanced Mobile Broadband (eMBB) as two prominent use cases. The URLLC and eMBB traffic is multiplexed over multiple numerologies in 5G New Radio, depending on their distinct service requirements. Therein, we present our optimization algorithm, Mixed-numerology Mini-slot based Resource Allocation (MiMRA), to minimize the impact on eMBB data rate due to puncturing by different URLLC traffic classes. Our strategy controls such impact by introducing a puncturing rate threshold. Further, we propose a scheduling mechanism that maximizes the sum rate of all eMBB users while maintaining the minimum data rate requirement of each eMBB user. The results obtained by simulation confirm the applicability of our proposed resource allocation algorithm.
ISSN:2644-125X
2644-125X
DOI:10.1109/OJCOMS.2023.3254816