Stereochemistry of the Reactions of Glutamate-1-semialdehyde Aminomutase with 4,5-Diaminovalerate
Conversion of glutamate 1-semialdehyde to the tetrapyrrole precursor, 5-aminolevulinate, takes place in an aminomutase-catalyzed reaction involving transformations at both the non-chiral C5 and the chiral C4 of the intermediate 4,5-diaminovalerate. Presented with racemic diaminovalerate and an exces...
Saved in:
Published in | The Journal of biological chemistry Vol. 278; no. 42; pp. 40521 - 40526 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
17.10.2003
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Conversion of glutamate 1-semialdehyde to the tetrapyrrole precursor, 5-aminolevulinate, takes place in an aminomutase-catalyzed reaction involving transformations at both the non-chiral C5 and the chiral C4 of the intermediate 4,5-diaminovalerate. Presented with racemic diaminovalerate and an excess of succinic semialdehyde, the enzyme catalyzes a transamination in which only the l-enantiomer is consumed. Simultaneously, equimolar 4-aminobutyrate and aminolevulinate are formed. The enzyme is also shown to transaminate aminolevulinate and 4-aminohexenoate to l-diaminovalerate as the exclusive amino product. The interaction of the enzyme with pure d- and l-enantiomers of diaminovalerate prepared by these reactions is described. Transamination of l-diaminovalerate yielded aminolevulinate quantitatively showing that reaction at the C5 amine does not occur significantly. A much slower transamination reaction was catalyzed with d-diaminovalerate as substrate. One product of this reaction, 4-aminobutyrate, was formed in the amount equal to that of the diaminovalerate consumed. Glutamate semialdehyde was deduced to be the other primary product and was also measured in significant amounts when a high concentration of the enzyme in its pyridoxal form was reacted with d-diaminovalerate in a single turnover. Single turnover reactions showed that both enantiomers of diaminovalerate converted the enzyme from its 420-nm absorbing pyridoxaldimine form to the 330-nm absorbing pyridoxamine via rapidly formed intermediates with different absorption spectra. The intermediate formed with l-DAVA (λmax = 420 nm) was deduced to be the protonated external aldimine with the 4-amino group. The intermediate formed with d-DAVA (λmax = 390 nm) was deduced to be the unprotonated external aldimine with the 5-amino group. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M306223200 |