A New Design Framework for Sparse FIR MIMO Equalizers

In this paper, we propose a new framework for the design of sparse finite impulse response (FIR) equalizers. We start by formulating greedy and convex-optimization-based solutions for sparse FIR linear equalizer tap vectors given a maximum allowable loss in the decision-point signal-to-noise ratio....

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 59; no. 8; pp. 2132 - 2140
Main Authors Gomaa, A., Al-Dhahir, N.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.08.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we propose a new framework for the design of sparse finite impulse response (FIR) equalizers. We start by formulating greedy and convex-optimization-based solutions for sparse FIR linear equalizer tap vectors given a maximum allowable loss in the decision-point signal-to-noise ratio. Then, we extend our formulation to decision feedback equalizers and multiple-antenna systems. This is followed by further generalization to the channel shortening setup which is important for communication systems operating over broadband channels with long channel impulse responses. We propose a novel approach to design a sparse target impulse response. Finally, as an application of current practical interest, we consider self far-end crosstalk cancellation on vectored very high-speed digital subscriber line systems for cellular backhaul networks.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2011.053111.100231