Simultaneous Inhibition of Ornithine Decarboxylase 1 and Pyruvate Kinase M2 Exerts Synergistic Effects Against Hepatocellular Carcinoma Cells
Previously, we showed that lactate promoted the proliferation and mobility of hepatocellular carcinoma (HCC) cells by increasing the expression of ornithine decarboxylase 1 (ODC1). In this study, we determined the relationship between ODC1 and pyruvate kinase M2 (PKM2, a key lactate metabolism enzym...
Saved in:
Published in | OncoTargets and therapy Vol. 13; pp. 11697 - 11709 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New Zealand
Taylor & Francis Ltd
01.01.2020
Dove |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Previously, we showed that lactate promoted the proliferation and mobility of hepatocellular carcinoma (HCC) cells by increasing the expression of ornithine decarboxylase 1 (ODC1). In this study, we determined the relationship between ODC1 and pyruvate kinase M2 (PKM2, a key lactate metabolism enzyme), and determined the combined effects of difluoromethylornithine (DFMO; an ODC1 inhibitor) and compound 3k (a PKM2 inhibitor) on HCC cells.
First, the relationship between PKM2 and ODC1 was analyzed using Western blotting, Cell Counting Kit (CCK)-8 assays, transwell assays, bioinformatics, quantitative real-time fluorescent PCR (qRT-PCR), and immunohistochemical staining. Thereafter, the ODC1 inhibitor DFMO and the PKM2 inhibitor compound 3k were employed. Their combined effects on HCC cell proliferation and mobility were evaluated via CCK-8 assay, flow cytometry, a subcutaneous xenograft tumor model in mice, wound healing assays, and transwell assays. Additionally, the effects of DFMO and compound 3k on the epithelial-mesenchymal transition phenotype and the AKT/GSK-3β/β-catenin pathway were explored using Western blotting and immunofluorescence.
knockdown significantly decreased the ODC1 expression, and the proliferation and invasion of HCC cells, while
overexpression reversed the inhibitory effects of
knockdown. Similarly, inhibition of
also decreased the expression of PKM2 via reducing the c-myc-induced transcription.
was co-expressed with
in HCC samples, while simultaneously upregulated
and
led to the poorest survival outcome. DFMO and compound 3k synergistically inhibited HCC cell proliferation, induced apoptosis, and suppressed cell mobility, as well as the EMT phenotype and the AKT/GSK-3β/β-catenin pathway. The AKT activator SC79 reversed the inhibitory effects.
/
are involved in a positive feedback loop. The simultaneous inhibition of ODC1 and PKM2 using DFMO and compound 3k exerts synergistic effects against HCC cells via the AKT/GSK-3β/β-catenin pathway. Thus, DFMO combined with compound 3k may be a novel effective strategy for treating HCC. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work |
ISSN: | 1178-6930 1178-6930 |
DOI: | 10.2147/OTT.S240535 |