Neural Circuit Repair by Low-Intensity rTMS
Electromagnetic brain stimulation is a promising treatment in neurology and psychiatry. However, clinical outcomes are variable and underlying mechanisms remain ill-defined, impeding the development of new effective stimulation protocols. There is increasing application of repetitive transcranial ma...
Saved in:
Published in | Cerebellum (London, England) Vol. 21; no. 5; pp. 750 - 754 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2022
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Electromagnetic brain stimulation is a promising treatment in neurology and psychiatry. However, clinical outcomes are variable and underlying mechanisms remain ill-defined, impeding the development of new effective stimulation protocols. There is increasing application of repetitive transcranial magnetic stimulation (rTMS) to the cerebellum to induce forebrain plasticity through its long-distance cerebello-cerebral circuits. To better understand what magnetic stimulation does within the cerebellum, we have developed tools to generate defined low-intensity (LI) magnetic fields and deliver them in vivo, in 3D organotypic culture and in primary cultures, over a range of stimulation parameters. Here we show that low-intensity rTMS (LI-rTMS) to the cerebellum induces axon growth and synapse formation providing olivocerebellar reinnervation. This repair depends on stimulation pattern, with complex biomimetic patterns being most effective, and this requires the presence of a cellular magnetoreceptor, cryptochrome. To explain these reparative changes, we found that repair-promoting LI-rTMS patterns, but not ineffective ones, increased c-fos expression in Purkinje neurons, consistent with the production of reactive oxygen species by activated cryptochrome. Rather than activating neurons via induced electric currents, we propose that weak magnetic fields act through cryptochrome, activating intracellular signals that induce climbing fibre-Purkinje cell reinnervation. This information opens new routes to optimize cerebellar magnetic stimulation and its potential role as an effective treatment for neurological diseases. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 1473-4230 1473-4222 1473-4230 |
DOI: | 10.1007/s12311-021-01354-4 |