Distant spin entanglement via fast and coherent electron shuttling
In the quest for large-scale quantum computing, networked quantum computers offer a natural path towards scalability. While recent experiments have demonstrated nearest neighbour entanglement for electron spin qubits in semiconductors, on-chip long-distance entanglement could bring more versatility...
Saved in:
Published in | Nature nanotechnology Vol. 16; no. 5; pp. 570 - 575 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In the quest for large-scale quantum computing, networked quantum computers offer a natural path towards scalability. While recent experiments have demonstrated nearest neighbour entanglement for electron spin qubits in semiconductors, on-chip long-distance entanglement could bring more versatility to connect quantum core units. Here, we employ the moving trapping potential of a surface acoustic wave to realize the controlled and coherent transfer of a pair of entangled electron spins between two distant quantum dots. The subsequent electron displacement induces coherent spin rotations, which drives spin quantum interferences. We observe high-contrast interference as a signature of the preservation of the entanglement all along the displacement procedure, which includes a separation of the two spins by a distance of 6 μm. This work opens the route towards fast on-chip deterministic interconnection of remote quantum bits in semiconductor quantum circuits.
On-chip, long-distance entanglement of spin qubits in semiconductors could enable connectivity of quantum core units for networked quantum computing. The moving trapping potential of a surface acoustic wave can subsequently displace two entangled spins while preserving entanglement over a separation of 6 μm. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1748-3387 1748-3395 |
DOI: | 10.1038/s41565-021-00846-y |