Two-agent single-machine scheduling with cumulative deterioration

We address cumulative deterioration scheduling in which two agents compete to perform their respective jobs on a single machine. By cumulative deterioration we mean that the actual processing time of any job of the two agents is a linear increasing function of the total normal processing times of al...

Full description

Saved in:
Bibliographic Details
Published in4OR Vol. 17; no. 2; pp. 201 - 219
Main Authors Chen, Ren-Xia, Li, Shi-Sheng
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We address cumulative deterioration scheduling in which two agents compete to perform their respective jobs on a single machine. By cumulative deterioration we mean that the actual processing time of any job of the two agents is a linear increasing function of the total normal processing times of already processed jobs. Each agent desires to optimize some scheduling criterion that depends on the completion times of its own jobs only. We study several scheduling problems arising from different combinations of some regular scheduling criteria, including the maximum cost (embracing lateness and makespan as its special cases), the total completion time, and the (weighted) number of tardy jobs. The aim is to find an optimal schedule that minimizes the objective value of one agent while maintaining the objective value of the other agent not exceeding a fixed upper bound. For each problem under study, we design either a polynomial-time or a pseudo-polynomial-time algorithm to solve it.
ISSN:1619-4500
1614-2411
DOI:10.1007/s10288-018-0388-0