A Comparative Study of Microstructure and Hot Deformability of a Fe–Al–Ta Iron Aluminide Prepared via Additive Manufacturing and Conventional Casting
In this work, the microstructure and hot deformation behavior of laser powder bed fusion (L-PBF) and conventionally cast Fe-25Al-1.5Ta (at.%) alloys were compared. The L-PBF builds recrystallized comparably to the as-cast samples during hot deformation. Nevertheless, distinct differences were observ...
Saved in:
Published in | Crystals (Basel) Vol. 12; no. 12; p. 1709 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this work, the microstructure and hot deformation behavior of laser powder bed fusion (L-PBF) and conventionally cast Fe-25Al-1.5Ta (at.%) alloys were compared. The L-PBF builds recrystallized comparably to the as-cast samples during hot deformation. Nevertheless, distinct differences were observed in the flow behavior characteristics between the as-cast and L-PBF samples. The L-PBF builds exhibited lower flow stress than the as-cast material over the entire deformation conditions tested. The average activation energy of hot deformation (Q) of 344 kJ mol−1 was calculated for the L-PBF build and 385 kJ mol−1 for the cast material. The lower Q indicates lower deformation resistance of the L-PBF sample. The peak work hardening rate (θ) in the L-PBF sample (1.72 × 103 MPa) was significantly smaller than that of the as-cast sample (3.02 × 103 MPa), suggesting that the dislocation glide in the L-PBF sample is less hindered during deformation. Possible sources of the observed differences in the deformation behavior between the L-PBF and cast materials will be discussed. Initial and post-deformation microstructures were characterized using an X-ray diffractometer (XRD) and ultra-high-resolution scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX) detector. The C14-(Fe, Al)2Ta Laves phase (P63/mmc) was predominantly formed at the A2 α-(Fe, Al) matrix phase grain boundaries in both the as-cast and L-PBF materials. The XRD results suggest that the ordering transition from B2-FeAl to a D03-Fe3Al phase occurs during casting, but rarely during ultra-high-cooling L-PBF processing. In summary, the L-PBF creates samples that are subject to less work hardening and require less deformation resistance, and thus, can be formed by a lower deformation force. It, in turn, reduces the loads imposed on the tooling and dies during the deformation processing, contributing to less wear and the high durability of dies. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2073-4352 2073-4352 |
DOI: | 10.3390/cryst12121709 |