Endophytic Bacterial Communities in Ginseng and Their Antifungal Activity against Pathogens

Plant roots are associated with diverse communities of endophytic bacteria which do not exert adverse effects. The diversity of bacterial endophytes associated with ginseng roots cultivated in three different areas in Korea was investigated. Sixty-three colonies were isolated from the interior of gi...

Full description

Saved in:
Bibliographic Details
Published inMicrobial ecology Vol. 54; no. 2; pp. 341 - 351
Main Authors Cho, Kye Man, Hong, Su Young, Lee, Sun Mi, Kim, Yong Hee, Kahng, Goon Gjung, Lim, Yong Pyo, Kim, Hoon, Yun, Han Dae
Format Journal Article
LanguageEnglish
Published New York, NY Springer Science + Business Media, Inc 01.08.2007
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Plant roots are associated with diverse communities of endophytic bacteria which do not exert adverse effects. The diversity of bacterial endophytes associated with ginseng roots cultivated in three different areas in Korea was investigated. Sixty-three colonies were isolated from the interior of ginseng roots. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates belonged to three major phylogenetic groups: the high G+C Gram-positive bacteria (HGCGPB), low G+C Gram-positive bacteria (LGCGPB), and the Proteobacteria. The dominant species at the three different ginseng growing areas were: HGCGPB at Ganghwa (55.0%), LGCGPB at Geumsan (45.5%), and Proteobacteria at Jinan (61.9%). Most cellulase-, xylanase-, and pectinase-producing colonies among the isolates belong to the LGCGPB group, except for Pectobacterium carotovora which belonged to the Proteobacteria. The 13 isolates belonging to LGCGPB and Proteobacteria were assessed for their antifungal activity against phytopathogenic fungi such as Rhizoctonia solani. Among them, Paenibacillus polymyxa GS01, Bacillus sp. GS07, and Pseudomonas poae JA01 show potential activity as biocontrol agents against phytopathogenic fungi. Finally, most of the low G+C Gram-positive bacteria with antifungal activity against phytopathogenic microorganisms showed cellulolytic enzyme activity while some Proteobacteria with the antifungal activity and the high G+C Gram-positive bacteria did not show any cellulolytic activity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0095-3628
1432-184X
DOI:10.1007/s00248-007-9208-3