Apolipoprotein A-I Regulates Lipid Hydrolysis by Hepatic Lipase

Association of hepatic lipase (HL) with pure heparan sulfate proteoglycans (HSPG) has little effect on hydrolysis of high density lipoprotein (HDL) particles, but significantly inhibits (>80%) the hydrolysis of low (LDL) and very low density lipoproteins (VLDL). Lipolytic inhibition is associated...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 275; no. 43; pp. 33480 - 33486
Main Authors Ramsamy, Tanya A., Neville, Tracey A.-M., Chauhan, Bobby M., Aggarwal, Dhiraj, Sparks, Daniel L.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.10.2000
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Association of hepatic lipase (HL) with pure heparan sulfate proteoglycans (HSPG) has little effect on hydrolysis of high density lipoprotein (HDL) particles, but significantly inhibits (>80%) the hydrolysis of low (LDL) and very low density lipoproteins (VLDL). Lipolytic inhibition is associated with a differential ability of the lipoproteins to remove HL from the HSPG. LDL and VLDL are unable to displace HL, whereas HDL readily displaces HL from the HSPG. These data show that HSPG-bound HL is inactive. Purified apolipoprotein (apo) A-I is more efficient than HDL at liberating HL from HSPG, and HL displacement is associated with the direct binding of apoA-I to HSPG. However, displacement of HL by apoA-I does not enhance hydrolysis of VLDL particles. This appears due to the direct inhibition of HL by apoA-I. Both apoA-I and HDL are able to inhibit VLDL lipid hydrolysis by up to 60%. Inhibition of VLDL hydrolysis is associated with the binding of apoA-I to the surface of the VLDL particle and a concomitant decreased affinity for HL. These data show that apoA-I can regulate lipid hydrolysis by HL by liberating/activating the enzyme from cell surface proteoglycans and by directly modulating lipoprotein binding and hydrolysis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M005436200