Hierarchical Autoencoder Frequency Features for Stress Detection
Stress has a significant negative impact on people, which has made it a primary social concern. Early stress detection is essential for effective stress management. This study proposes a Deep Learning (DL) method for effective stress detection using multimodal physiological signals - Electrocardiogr...
Saved in:
Published in | IEEE access Vol. 11; pp. 103232 - 103241 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Stress has a significant negative impact on people, which has made it a primary social concern. Early stress detection is essential for effective stress management. This study proposes a Deep Learning (DL) method for effective stress detection using multimodal physiological signals - Electrocardiogram (ECG) and Electrodermal activity (EDA). The extensive latent feature representation of DL models has yet to be fully explored. Hence, this paper proposes a hierarchical AutoEncoder (AE) feature fusion on the frequency domain. The latent representations from different layers of the autoencoder are combined and given as input to the classifier - Convolutional Recurrent Neural Network with Squeeze and Excitation (CRNN-SE) model. A two-set performance comparison is performed (romannum 1) performance on frequency band features, and raw data are compared. (romannum 2) autoencoders trained on three cost functions - Mean Squared Error (MSE), Kullback-Leibler (KL) divergence, and Cosine similarity performance are compared on frequency band features and raw data. To verify the generalizability of our approach, we tested it on four benchmark datasets- WAUC, CLAS, MAUS and ASCERTAIN. Results show that frequency band features showed better results than raw data by 4-8%, respectively. MSE loss produced better results than other losses for both frequency band features and raw data by 3-7%, respectively. The proposed approach considerably outperforms existing stress detection models that are subject-independent by 1-2%, respectively. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2023.3316365 |