Regulating the Assembly of Precursors of Carbon Nitrides to Improve Photocatalytic Hydrogen Production
Two-dimensional graphitic carbon nitrides (2D g-C3N4) are promising photocatalysts for water splitting to hydrogen due to their non-toxicity and high stability. However, the bulk g-C3N4 has some intrinsic drawbacks, such as rapid electron–hole recombination and low charge-carrier mobility, resulting...
Saved in:
Published in | Catalysts Vol. 12; no. 12; p. 1634 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Two-dimensional graphitic carbon nitrides (2D g-C3N4) are promising photocatalysts for water splitting to hydrogen due to their non-toxicity and high stability. However, the bulk g-C3N4 has some intrinsic drawbacks, such as rapid electron–hole recombination and low charge-carrier mobility, resulting in poor photocatalytic activity. Here, 2,4-diamine-6-phenyl-1,3,5-triazine was employed as a precursor to regulating the assembly of melamine and cyanuric acid in water. The resulting g-C3N4 not only improved the visible light absorption and electron–hole separation but also provided more catalytic sites for enhanced photocatalytic hydrogen evolution. The modified g-C3N4 (CNP10-H) showed a hydrogen-releasing rate of 2184 μmol·g−1·h−1, much higher than the bulk g-C3N4. |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal12121634 |