Seasonal and spatial variations of macro- and megabenthic community characteristics in two sections of the East China Sea
In spring and summer 2011, the macro- and megabenthic fauna in two sections of the East China Sea were investigated using an Agassiz net trawl to detect the seasonal and spatial variations of benthic community characteristics and the relation to environmental variables. The total number of species i...
Saved in:
Published in | Chinese journal of oceanology and limnology Vol. 35; no. 5; pp. 1152 - 1164 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Science Press
01.09.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In spring and summer 2011, the macro- and megabenthic fauna in two sections of the East China Sea were investigated using an Agassiz net trawl to detect the seasonal and spatial variations of benthic community characteristics and the relation to environmental variables. The total number of species increased slightly from spring (131 species) to summer (133) whereas the percentage of Mollusca decreased significantly. The index of relative importance (IRI) indicated that the top five important species changed completely from spring to summer. Species number, abundance and biomass in summer were significantly higher than in spring, but no significant difference was observed among areas (coastal, transitional and oceanic areas, divided basically from inshore to offshore). Species richness (at), diversity (H) and evenness (J) showed no significant seasonal or spatial variations. Cluster analysis and nMDS ordination identified three benthic communities from inshore to offshore, corresponding to the three areas. Analysis of Similarity (ANOSIM) indicated the overall significant difference in community structure between seasons and among areas. K-dominance curves revealed the high intrinsic diversity in the offshore area. Canonical correspondence analysis showed that the coastal community was positively correlated to total nitrogen and total organic carbon in spring, but negatively in summer; oceanic community was positively correlated to total nitrogen and total organic carbon in both seasons. Species such as Coelorhynchus multispinulosus, Neobythites sivicola, Lepidotrigla alata, Solenocera melantho, Parapenaeus fissuroides, Oratosquilla gonypetes and Spiropagurus spiriger occurred exclusively in the offshore oceanic area and their presence may reflect the influence of the offshore Kuroshio Current. |
---|---|
Bibliography: | XU Yong 1,2,3 ,LI Xinzheng 1,2,3 ,MALin 1,2,3,DONG Dong1,2,3, KOU Qi 1,2,3, SUI Jixing 1,2,3, GAN Zhibin 1,2,3, WANG Hongfa 1,2,3(1 Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China) macrobenthic fauna; megabenthic fauna; diversity; East China Sea; Kuroshio Current 37-1150/P In spring and summer 2011, the macro- and megabenthic fauna in two sections of the East China Sea were investigated using an Agassiz net trawl to detect the seasonal and spatial variations of benthic community characteristics and the relation to environmental variables. The total number of species increased slightly from spring (131 species) to summer (133) whereas the percentage of Mollusca decreased significantly. The index of relative importance (IRI) indicated that the top five important species changed completely from spring to summer. Species number, abundance and biomass in summer were significantly higher than in spring, but no significant difference was observed among areas (coastal, transitional and oceanic areas, divided basically from inshore to offshore). Species richness (at), diversity (H) and evenness (J) showed no significant seasonal or spatial variations. Cluster analysis and nMDS ordination identified three benthic communities from inshore to offshore, corresponding to the three areas. Analysis of Similarity (ANOSIM) indicated the overall significant difference in community structure between seasons and among areas. K-dominance curves revealed the high intrinsic diversity in the offshore area. Canonical correspondence analysis showed that the coastal community was positively correlated to total nitrogen and total organic carbon in spring, but negatively in summer; oceanic community was positively correlated to total nitrogen and total organic carbon in both seasons. Species such as Coelorhynchus multispinulosus, Neobythites sivicola, Lepidotrigla alata, Solenocera melantho, Parapenaeus fissuroides, Oratosquilla gonypetes and Spiropagurus spiriger occurred exclusively in the offshore oceanic area and their presence may reflect the influence of the offshore Kuroshio Current. |
ISSN: | 0254-4059 2096-5508 1993-5005 2523-3521 |
DOI: | 10.1007/s00343-017-6085-6 |