H-tunneling in the Multiple H-transfers of the Catalytic Cycle of Morphinone Reductase and in the Reductive Half-reaction of the Homologous Pentaerythritol Tetranitrate Reductase

The mechanism of flavin reduction in morphinone reductase (MR) and pentaerythritol tetranitrate (PETN) reductase, and flavin oxidation in MR, has been studied by stopped-flow and steady-state kinetic methods. The temperature dependence of the primary kinetic isotope effect for flavin reduction in MR...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 278; no. 45; pp. 43973 - 43982
Main Authors Basran, Jaswir, Harris, Richard J., Sutcliffe, Michael J., Scrutton, Nigel S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 07.11.2003
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The mechanism of flavin reduction in morphinone reductase (MR) and pentaerythritol tetranitrate (PETN) reductase, and flavin oxidation in MR, has been studied by stopped-flow and steady-state kinetic methods. The temperature dependence of the primary kinetic isotope effect for flavin reduction in MR and PETN reductase by nicotinamide coenzyme indicates that quantum mechanical tunneling plays a major role in hydride transfer. In PETN reductase, the kinetic isotope effect (KIE) is essentially independent of temperature in the experimentally accessible range, contrasting with strongly temperature-dependent reaction rates, consistent with a tunneling mechanism from the vibrational ground state of the reactive C–H/D bond. In MR, both the reaction rates and the KIE are dependent on temperature, and analysis using the Eyring equation suggests that hydride transfer has a major tunneling component, which, unlike PETN reductase, is gated by thermally induced vibrations in the protein. The oxidative half-reaction of MR is fully rate-limiting in steady-state turnover with the substrate 2-cyclohexenone and NADH at saturating concentrations. The KIE for hydride transfer from reduced flavin to the α/β unsaturated bond of 2-cyclohexenone is independent of temperature, contrasting with strongly temperature-dependent reaction rates, again consistent with ground-state tunneling. A large solvent isotope effect (SIE) accompanies the oxidative half-reaction, which is also independent of temperature in the experimentally accessible range. Double isotope effects indicate that hydride transfer from the flavin N5 atom to 2-cyclohexenone, and the protonation of 2-cyclohexenone, are concerted and both the temperature-independent KIE and SIE suggest that this reaction also proceeds by ground-state quantum tunneling. Our results demonstrate the importance of quantum tunneling in the reduction of flavins by nicotinamide coenzymes. This is the first observation of (i) three H-nuclei in an enzymic reaction being transferred by tunneling and (ii) the utilization of both passive and active dynamics within the same native enzyme.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M305983200