Corporate Bankruptcy Prediction Using Machine Learning Methodologies with a Focus on Sequential Data

We examine whether corporate bankruptcy predictions can be improved by utilizing the recurrent neural network (RNN) and long short-term memory (LSTM) algorithms, which can process sequential data. Employing the RNN and LSTM methodologies improves bankruptcy prediction performance relative to using o...

Full description

Saved in:
Bibliographic Details
Published inComputational economics Vol. 59; no. 3; pp. 1231 - 1249
Main Authors Kim, Hyeongjun, Cho, Hoon, Ryu, Doojin
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We examine whether corporate bankruptcy predictions can be improved by utilizing the recurrent neural network (RNN) and long short-term memory (LSTM) algorithms, which can process sequential data. Employing the RNN and LSTM methodologies improves bankruptcy prediction performance relative to using other classification techniques, such as logistic regression, support vector machine, and random forest methods. Because performance indicators, such as sensitivity and specificity, differ depending on the methodology, selecting a model that suits the purpose of the bankruptcy predictions is necessary. Our ensemble model, a synthesis of all methodologies, exhibits the best forecasting performance. In the test sample for the ensemble model, none of the observations with a default probability of less than 10% defaults within one year.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0927-7099
1572-9974
DOI:10.1007/s10614-021-10126-5