Laser-induced fluorescence imaging of acetone inside evaporating and burning fuel droplets

Laser-induced fluorescence was used to visualize acetone fields inside individual droplets of pure acetone as well as droplets composed of methanol or 1-propanol initially mixed with acetone. Droplets were supported on a horizontal wire and two vaporization conditions were investigated: (1) slow eva...

Full description

Saved in:
Bibliographic Details
Published inOptics and lasers in engineering Vol. 47; no. 1; pp. 51 - 56
Main Authors Shringi, D.S., Shaw, B.D., Dwyer, H.A.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Laser-induced fluorescence was used to visualize acetone fields inside individual droplets of pure acetone as well as droplets composed of methanol or 1-propanol initially mixed with acetone. Droplets were supported on a horizontal wire and two vaporization conditions were investigated: (1) slow evaporation in room air and (2) droplet combustion, which leads to substantially faster droplet surface regression rates. Acetone was preferentially gasified, causing its concentration in droplets to drop in time with resultant decreases in acetone fluorescence intensities. Slowly vaporizing droplets did not exhibit large spatial variations of fluorescence within droplets, indicating that these droplets were relatively well mixed. Ignition of droplets led to significant variations in fluorescence intensities within droplets, indicating that these droplets were not well mixed. Ignited droplets composed of mixtures of 1-propanol and acetone showed large time-varying changes in shapes for higher acetone concentrations, suggesting that bubble formation was occurring in these droplets.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0143-8166
1873-0302
DOI:10.1016/j.optlaseng.2008.08.002