Electromigration-Aware Architecture for Modern Microprocessors

Reliability is a fundamental requirement in microprocessors that guarantees correct execution over their lifetimes. The reliability-related design rules depend on the process technology and device operating conditions. To meet reliability requirements, advanced process nodes impose challenging desig...

Full description

Saved in:
Bibliographic Details
Published inJournal of low power electronics and applications Vol. 13; no. 1; p. 7
Main Authors Gabbay, Freddy, Mendelson, Avi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Reliability is a fundamental requirement in microprocessors that guarantees correct execution over their lifetimes. The reliability-related design rules depend on the process technology and device operating conditions. To meet reliability requirements, advanced process nodes impose challenging design rules, which place a major burden on the VLSI implementation flow because they impose severe physical constraints. This paper focuses on electromigration (EM), one of the critical factors affecting semiconductor reliability. EM is the aging process of on-die wires in integrated circuits (ICs). Traditionally, EM issues have been handled at the physical design level, which enforces reliability rules using worst-case scenario analysis to detect and solve violations. In this paper, we offer solutions that exploit architectural characteristics to reduce EM impact. The use of architectural methods can simplify EM solutions, and such methods can be incorporated with standard physical-design-based solutions to enhance current methods. Our comprehensive physical simulation results show that, with minimal area, power, and performance overhead, the proposed solution can relax EM design efforts and significantly extend a microprocessor’s lifetime.
ISSN:2079-9268
2079-9268
DOI:10.3390/jlpea13010007