Drought Occurring With Hot Extremes: Changes Under Future Climate Change on Loess Plateau, China

Drought is one of the most widespread and destructive hazards over the Loess Plateau (LP) of China. Due to climate change, extremely high temperature accompanied with drought (expressed as hot drought) may lead to intensive losses of both properties and human deaths in future. A hot drought probabil...

Full description

Saved in:
Bibliographic Details
Published inEarth's future Vol. 7; no. 6; pp. 587 - 604
Main Authors Sun, C. X., Huang, G. H., Fan, Y., Zhou, X., Lu, C., Wang, X. Q.
Format Journal Article
LanguageEnglish
Published Bognor Regis John Wiley & Sons, Inc 01.06.2019
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Drought is one of the most widespread and destructive hazards over the Loess Plateau (LP) of China. Due to climate change, extremely high temperature accompanied with drought (expressed as hot drought) may lead to intensive losses of both properties and human deaths in future. A hot drought probabilistic recognition system is developed to investigate how potential future climate changes will impact the simultaneous occurrence of drought and hot extremes (hot days exceeding certain values) on the LP. Two regional climate models, coupled with multiple bias‐correction techniques and multivariate probabilistic inference, are innovative integrated into the hot drought probabilistic recognition system to reveal the concurrence risk of droughts and hot extremes under different Representative Concentration Pathway (RCP) scenarios. The hot‐day index, TX90p, indicating the number of days with daily maximum temperature (Tmax) exceeding the 90th percentile threshold, and the Standardized Precipitation Index are applied to identify the joint risks on the LP using copula‐based methods. The results show that precipitation will increase throughout most of the LP under both RCP4.5 and RCP8.5 scenarios of 2036–2095, while Tmax may increase significantly all over the LP (1.8–2.7 °C for RCP4.5 and 2.7–3.6 °C for RCP8.5). The joint return periods of Standardized Precipitation Index and TX90p show that fewer stations will experience severe drought with long‐term hot extremes in two future scenarios. However, some stations may experience hot droughts that are more frequent and extreme, particularly certain stations in the southwest and south‐central regions of the LP with recurrence period less than 10 years. Key Points A modeling system is developed to investigate future characteristics of simultaneous occurrence of drought and hot extremes Precipitation projections from PRICIS and RegCM models were jointly corrected by the multidimensional copula model Results show that some stations in partial area of Loess Plateau may experience hot droughts that are more frequent and extreme in future
ISSN:2328-4277
2328-4277
DOI:10.1029/2018EF001103