Wind Power Prediction Using Ensemble Learning-Based Models

Wind power is one of the most potential energies and the major available renewable energy sources. Precisely predicting wind power production is essential for the management and the integration of wind power in a smart grid. The goal of this study is to predict wind power production with sufficient...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 61517 - 61527
Main Authors Lee, Junho, Wang, Wu, Harrou, Fouzi, Sun, Ying
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Wind power is one of the most potential energies and the major available renewable energy sources. Precisely predicting wind power production is essential for the management and the integration of wind power in a smart grid. The goal of this study is to predict wind power production with sufficient accuracy based on various factors using ensemble learning-based methods that consider the time-dependent nature of the wind power measurements. Essentially, the ensemble learning methods combine multiple learners to obtain an enhanced prediction performance in comparison to conventional standalone learners. In addition, they reduce the overall prediction error and have the capacity to merge various models. At first, this paper investigates the prediction capability of the well-known ensemble approaches Boosted Trees, Random Forest, and Generalized Random Forest for wind power prediction. We compared the prediction performance of these ensemble models to two frequently used prediction methods: Gaussian process regression, and Support Vector Regression. Experimental measurements recorded every ten minutes from actual wind turbines located in France and Turkey are used to test the prediction efficiency of the studied models. Experimental results have shown that the ensemble methods can predict wind power production with high accuracy compared to the standalone models. Furthermore, the findings clearly reveal that the lagged variables contribute significantly to the ensemble models, and permits constructing more parsimonious models.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2983234