A study on the microstructural parameters of Zn (1-x)LaxZrxO nanopowders by X-ray line broadening analysis

In the present study, the pure and La-Zr co-doped ZnO nanoparticles were prepared by sol–gel technique using zinc acetate dehydrate (Zn(Ac)2·2H2O), lanthanum nitrate hexahydrate (La(NO3)3 ·6H2O) and zirconium chloride (ZrCl4) as precursor. The structure and morphology of the prepared nanoparticle sa...

Full description

Saved in:
Bibliographic Details
Published inMaterials research (São Carlos, São Paulo, Brazil) Vol. 19; no. 3; pp. 548 - 554
Main Authors Chenari, Hossein Mahmoudi, Moafi, Hadi Fallah, Rezaee, Omid
Format Journal Article
LanguageEnglish
Published ABM, ABC, ABPol 01.05.2016
Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the present study, the pure and La-Zr co-doped ZnO nanoparticles were prepared by sol–gel technique using zinc acetate dehydrate (Zn(Ac)2·2H2O), lanthanum nitrate hexahydrate (La(NO3)3 ·6H2O) and zirconium chloride (ZrCl4) as precursor. The structure and morphology of the prepared nanoparticle samples were studied using X-ray diffraction and transmission electron microscopy measurements. X-ray diffraction results indicated that all the samples have crystalline wurtzite phase. TEM showed that powder was polycrystalline in nature with random distribution of the pure and La-Zr doped ZnO nanoparticles. We demonstrate strain-size evaluations for pure and doped ZnO nanoparticles from the x-ray line profile analysis. The microstructural effects of crystalline materials in terms of crystallite sizes and lattice strain on the peak broadening were investigated using Williamson-Hall (W-H) analysis and size- strain plot (SSP) method. The average crystallite size of Zn (1-x)LaxZrxO nanoparticles estimated from the W–H analysis and SSP method varied as the doping concentration increased. The incorporation of Zr4+ ion in the place of Zn2+ caused an increase in the size of nanocrystals as compared to undoped ZnO. The average particle sizes of co-doped ZnO nanoparticles estimated from the USDM model is in good agreement with the TEM results.
ISSN:1516-1439
1980-5373
1980-5373
DOI:10.1590/1980-5373-MR-2016-0017