Speed Regulation for PMSM drives based on a Novel Sliding Mode Controller

This paper develops a novel sliding mode control technology and a comprehensive evaluation methodology for speed control of permanent magnet synchronous motor (PMSM). In most of the existing literature, only control precision of the speed corrector is investigated. However, the control strategy shou...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; p. 1
Main Authors Feng, Li, Deng, Meng, Xu, Shuiqing, Huang, Darong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper develops a novel sliding mode control technology and a comprehensive evaluation methodology for speed control of permanent magnet synchronous motor (PMSM). In most of the existing literature, only control precision of the speed corrector is investigated. However, the control strategy should be stable to the noise and disturbance caused by the environment and parameter uncertainties. In order to possessing faster dynamic response, stronger anti-interference ability and high stability of input, a highly stable sliding surface is proposed for siding mode control. Unlike most of reaching laws that requires the variation of designed sliding surfaces, this method takes state vectors in consideration. In addition, a comprehensive evaluation algorithm is presented to obtain reasonable assessment on speed control for synchronous PMSMs in different operating phases (starting, transient, steady-state rating). Finally, the simulation results verify the effectiveness and validity of the proposed sliding mode speed controller.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2983898