Girth Analysis of Tanner's (3, 17)-Regular QC-LDPC Codes Based on Euclidean Division Algorithm

In this paper, the girth distribution of the Tanner's (3, 17)-regular quasi-cyclic LDPC (QC-LDPC) codes with code length <inline-formula> <tex-math notation="LaTeX">17p </tex-math></inline-formula> is determined, where <inline-formula> <tex-math notati...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 94917 - 94930
Main Authors Xu, Hengzhou, Duan, Yake, Miao, Xiaoxiao, Zhu, Hai
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, the girth distribution of the Tanner's (3, 17)-regular quasi-cyclic LDPC (QC-LDPC) codes with code length <inline-formula> <tex-math notation="LaTeX">17p </tex-math></inline-formula> is determined, where <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> is a prime and <inline-formula> <tex-math notation="LaTeX">p \equiv 1~(\bmod ~51) </tex-math></inline-formula>. By analyzing their cycle structure, five equivalent types of cycles with length not more than 10 are obtained. The existence of these five types of cycles is transmitted into polynomial equations in a 51st unit root of the prime field <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{p} </tex-math></inline-formula>. By using the Euclidean division algorithm to check the existence of solutions for such polynomial equations, the girth values of the Tanner's (3, 17)-regular QC-LDPC codes are obtained.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2929587