Molecular dynamics simulations of lipid membranes with lateral force: Rupture and dynamic properties
Membranes' response to lateral tension, and eventual rupture, remains poorly understood. In this study, pure dipalmitoylphosphatidylcholine (DPPC) lipid bilayers, under tension/pressure, were studied using molecular dynamics (MD) simulations. The irreversible membrane breakdown is demonstrated...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1838; no. 3; pp. 994 - 1002 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.03.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Membranes' response to lateral tension, and eventual rupture, remains poorly understood. In this study, pure dipalmitoylphosphatidylcholine (DPPC) lipid bilayers, under tension/pressure, were studied using molecular dynamics (MD) simulations. The irreversible membrane breakdown is demonstrated to depend on the amplitude of lateral tension, loading rate, and the size of the bilayer. In all of our simulations, −200bar lateral pressure was found to be enough to rupture lipid membrane regardless of the loading rate or the membrane size. Loading rate and membrane size had a significant impact on rupture. A variety of dynamic properties of lipid molecules, probability distribution of area per lipid particularly, have been determined, and found to be fundamental for describing membrane behavior in detail, thus providing the quantitative description for the requirement of membrane rupture.
[Display omitted]
•We focus on the response and rupture of membranes under applied tension.•MD simulations of membranes under varying loading conditions were performed.•Area per lipid distribution was found to follow closely the Dagum distribution.•We observed that rupture occurred via nucleation of water channels.•How rupture occurs, depends on the loading rate. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0005-2736 0006-3002 1879-2642 |
DOI: | 10.1016/j.bbamem.2013.12.011 |