Task Placement Across Multiple Public Clouds With Deadline Constraints for Smart Factory

The smart factory of Industry 4.0 has been regarded as a solution for handling the increasing production complexity caused by growing global economy and demand for customized products. Besides, it will make the interactions between humans, machines, and products become a highly competitive area for...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 6; pp. 1560 - 1564
Main Authors Li, Boyu, Zhao, Zhipeng, Guan, Yan, Ai, Ning, Dong, Xiaowen, Wu, Bin
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The smart factory of Industry 4.0 has been regarded as a solution for handling the increasing production complexity caused by growing global economy and demand for customized products. Besides, it will make the interactions between humans, machines, and products become a highly competitive area for market capitalization in the near feature. Nowadays, cloud computing with the high performance of computing and self-service access plays an important role in realizing smart factor. To minimize the overall cost of company in a heterogeneous cloud environment, including multiple public clouds, while ensuring a proper level of quality-of-service, task placement across multiple public clouds is a critical problem, where task deadlines and long-haul data transmission costs between smart factory and different clouds must be considered. We formulate this task placement problem as an integer linear program (ILP) to minimize company cost under the task deadline constraint. With extensive simulations, we evaluate the performance of our proposed ILP model in heterogeneous public clouds with finite and infinite resources.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2017.2779462