Sodium channel gating currents in frog skeletal muscle

Charge movements similar to those attributed to the sodium channel gating mechanism in nerve have been measured in frog skeletal muscle using the vaseline-gap voltage-clamp technique. The time course of gating currents elicited by moderate to strong depolarizations could be well fitted by the sum of...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of general physiology Vol. 82; no. 5; pp. 679 - 701
Main Author CAMPBELL, D. T
Format Journal Article
LanguageEnglish
Published New York, NY Rockefeller University Press 01.11.1983
The Rockefeller University Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Charge movements similar to those attributed to the sodium channel gating mechanism in nerve have been measured in frog skeletal muscle using the vaseline-gap voltage-clamp technique. The time course of gating currents elicited by moderate to strong depolarizations could be well fitted by the sum of two exponentials. The gating charge exhibits immobilization: at a holding potential of -90 mV the proportion of charge that returns after a depolarizing prepulse (OFF charge) decreases with the duration of the prepulse with a time course similar to inactivation of sodium currents measured in the same fiber at the same potential. OFF charge movements elicited by a return to more negative holding potentials of -120 or -150 mV show distinct fast and slow phases. At these holding potentials the total charge moved during both phases of the gating current is equal to the ON charge moved during the preceding prepulse. It is suggested that the slow component of OFF charge movement represents the slower return of charge "immobilized" during the prepulse. A slow mechanism of charge immobilization is also evident: the maximum charge moved for a strong depolarization is approximately doubled by changing the holding potential from -90 to -150 mV. Although they are larger in magnitude for a -150-mV holding potential, the gating currents elicited by steps to a given potential have similar kinetics whether the holding potential is -90 or -150 mV.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-1295
1540-7748
DOI:10.1085/jgp.82.5.679