Impact of biomass burning sources on seasonal aerosol air quality

In the Huon Valley, Tasmania, current public perception is that smoke from regeneration burning is the principal cause of pollution events in autumn. These events lead to exceedences of national air quality standards and to significant health impacts on the rural population. To date there is little...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric environment (1994) Vol. 67; pp. 437 - 447
Main Authors Reisen, Fabienne, Meyer, C.P. (Mick), Keywood, Melita D.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.03.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the Huon Valley, Tasmania, current public perception is that smoke from regeneration burning is the principal cause of pollution events in autumn. These events lead to exceedences of national air quality standards and to significant health impacts on the rural population. To date there is little data on the significance of the impact. The aim of the study was to quantitatively assess the seasonal atmospheric particle loadings in the Huon Valley and determine the impact of smoke pollution. The study monitored fine (PM2.5) and coarse (PM10) particle concentrations and their chemical composition at two locations in the Huon Valley, Geeveston, an urban site and Grove, a rural site, between March 2009 and November 2010. The monitoring program clearly showed that biomass burning was a significant source of PM2.5 in the Huon Valley, leading to exceedences of the 24 h PM2.5 Ambient Air Quality National Environment Protection Measures advisory standard on a number of occasions. Significant increases of PM2.5 concentrations above background occurred during periods of prescribed burning as well as during the winter season. Although the intensity of emissions from prescribed burns (PB) and residential woodheaters (WH) was similar, emissions from WH were the largest source of PM2.5, with a contribution of 77% to the ambient PM2.5 load compared to an 11% contribution from PB. The results have also shown a greater impact on air quality at the urban site than at the rural site, indicating that PM2.5 concentrations are primarily influenced by localised sources rather than by regional pollution. The potential impact on local residents of the high PM concentrations during the PB and WH season was assessed. WH pollution is largely a persistent night-time issue in contrast to PB events which generally occur during the day and are of short duration. Due to the long persistence of high PM concentrations in winter, indoor PM concentrations are unlikely to be substantially lower than outdoor ones. However plume strikes are usually of shorter duration and therefore it may be possible to avoid exposure to PB events by remaining indoors. ► Impact of biomass burning sources on air quality is assessed for an urban and rural site in Tasmania. ► Both chemical and PMF analysis confirmed that biomass combustion was a major source of PM2.5. ► Emissions from residential woodheaters were the largest source of PM2.5, compared to prescribed burns. ► PM2.5 concentrations are influenced by localised sources rather than by regional pollution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1352-2310
1873-2844
DOI:10.1016/j.atmosenv.2012.11.004