KARATE: PKA-induced KRAS4B-RHOA-mTORC2 supercomplex phosphorylates AKT in insulin signaling and glucose homeostasis

AKT is a serine/threonine kinase that plays an important role in metabolism, cell growth, and cytoskeletal dynamics. AKT is activated by two kinases, PDK1 and mTORC2. Although the regulation of PDK1 is well understood, the mechanism that controls mTORC2 is unknown. Here, by investigating insulin rec...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 81; no. 22; pp. 4622 - 4634.e8
Main Authors Senoo, Hiroshi, Murata, Daisuke, Wai, May, Arai, Kenta, Iwata, Wakiko, Sesaki, Hiromi, Iijima, Miho
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 18.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:AKT is a serine/threonine kinase that plays an important role in metabolism, cell growth, and cytoskeletal dynamics. AKT is activated by two kinases, PDK1 and mTORC2. Although the regulation of PDK1 is well understood, the mechanism that controls mTORC2 is unknown. Here, by investigating insulin receptor signaling in human cells and biochemical reconstitution, we found that insulin induces the activation of mTORC2 toward AKT by assembling a supercomplex with KRAS4B and RHOA GTPases, termed KARATE (KRAS4B-RHOA-mTORC2 Ensemble). Insulin-induced KARATE assembly is controlled via phosphorylation of GTP-bound KRAS4B at S181 and GDP-bound RHOA at S188 by protein kinase A. By developing a KARATE inhibitor, we demonstrate that KRAS4B-RHOA interaction drives KARATE formation. In adipocytes, KARATE controls insulin-dependent translocation of the glucose transporter GLUT4 to the plasma membrane for glucose uptake. Thus, our work reveals a fundamental mechanism that activates mTORC2 toward AKT in insulin-regulated glucose homeostasis. [Display omitted] •PKA phosphorylates KRAS4B at S181 and RHOA at S188 upon insulin stimulation•Phosphorylated GTP-KRAS4B and GDP-RHOA form a supercomplex (KARATE) with mTORC2•KARATE phosphorylates AKT at S473 and stimulates glucose uptake•A KRAS4B-derived peptide inhibitor against KARATE was developed Senoo et al. report that insulin induces the activation of mTORC2 toward AKT by assembling a supercomplex with KRAS4B and RHOA GTPases, termed KARATE. Insulin-induced KARATE assembly is controlled via phosphorylation of GTP-bound KRAS4B at S181 and GDP-bound RHOA at S188 by protein kinase A.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1097-2765
1097-4164
DOI:10.1016/j.molcel.2021.09.001